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Introduction

 In a local linear approximation, the tangent line to the 
graph of a function is used to obtain a linear 
approximation of the function near the point of 
tangency.

 In this section, we will consider how one might improve 
on the accuracy of local linear approximations by using 
higher-order polynomials as approximating functions.

 We will also investigate the error associated with such 
approximations.



Local Linear Approximations
 Remember from Section 3.5 that the local linear 

approximation of a function f at �0 is 
� � ≈ � �0 + �′(�0)(� − �0)

or more simply � −  �1 ≈�(� − �0) and move  �1.

 This is a polynomial with degree 1 since �1.

 If the graph of a function f has a pronounced “bend” at �0, 
then we can expect that the accuracy of the local linear 
approximation of f at �0 will decrease rapidly as we 
progress away from �0.



Local Quadratic Approximations
 One way to deal with this problem is to approximate the 

function f at �0 by a polynomial p of degree 2.

 We want to find a polynomial so that the value of the 
function p at �0 (point) and the values of its first two 
derivatives (slope and concavity) at �0 match those of 
the original function f at �0 to make it a good “match” for
making approximations since it will remain close to the 
graph of f over a larger interval around �0 than the linear
approximation.



Substitution for Local Quadratic Approximation
 A general formula for a local quadratic approximation f at x = 0 

comes from y=ax2+bx+c:

 �(�) ≈  �0 +  �1� +  �2�
2 p = �0 +  �1� +  �2�

2

 Remembering the requirements from the previous slide will help 
perform the substitutions necessary to find this approximation.
 value of the function p at �0 (point) must match the original function 

f at �0 :  p(0) = f(0)

 values of its first two derivatives (slope and concavity) at �0 must 
match those of the original function f at �0 to make it a good fit: 
p’(0) = f’(0) and p’’(0) = f’’(0)

 Substitution
 p(0) = �0 +  �10 +  �202 = �0 means p(0) = f(0) = �0

 p’(0) = �1 + 2�20 = �1 means p’(0) = f’(0) = �1

 p””(0) = 2�2 means p’’(0) = f’’(0) = 2�2 

and gives �2  = 
f’’(0)

2

 Therefore,  �(�) ≈  



Example

 Find the local linear and quadratic approximations of �� at 
x = 0 and graph y= ��along with the two approximations.

 Solution

 f’(x) = �� and f’’(x) = �� so f(0)=f’(0)=f’’(0)= �0=1

 Linear approximation: y = mx + b = 1x + 1 = x + 1 ≈  ��

 Quadratic approximation: use y = 

  y = 1 + 1� +  
�2

2
≈ ��

 As expected, the quadratic approximation is more accurate
than the local linear approximation (see graph).



Maclaurin Polynomials

 Since the quadratic approximation was better than the 
local linear approximation, might a cubic or quartic 
(degree 4) approximation be better yet?

 To find out, we must extend our work on quadratics to a 
more general idea for higher degree polynomial 
approximations.

 See substitution work similar to that we did for 
quadratics on page 650 for higher degree polynomials.



Colin Maclaurin (1698-1746)

 Maclaurin polynomials are named after the Scottish 
mathematician Colin Maclaurin who received his Master’s
degree and started teaching college math at the age of 
17.  

 He worked to defend Isaac Newton’s methods and ideas 
and create some of his own.

 He also contributed to astronomy, actuarial sciences, 
mapping, etc.

 See more info on page 649

 NOTE:  The Maclaurin polynomials are the special cases 
of the Taylor polynomials (see later slides) in which �0 = 0.



Example
 Find the Maclaurin polynomials �0, �1, �2, �3, ��� �

�
 for ��.

 Solution

 All derivatives of �� are ��

so f(0)=f’(0)=f’’(0)=f’’’(0)=…=� � 0 =  �0=1

 �0 = f(0) = 1

 We already found �1 &  �2 earlier (linear and quadratic approx.)

 �1 = x + 1 and �2 = 1 + 1� +  
�2

2

 Cubic approximation: use �3 = 

�3 = 1 + 1� +  
�2

2
+  
�3

6

 General:  use 

 �
�
 =1 + 1� +  

�2

2
+  
�3

6
 + … + 

��

�!



Analysis of Example Results

 The graphs of 
�1(�),  �2(�),  �3(�) are all very 
good “matches” for �� near 
x=0 so they are good 
approximations near 0.

 The farther x is from 0, the 
less accurate these 
approximations become.

 Usually, the higher the 
degree the Maclaurin 
polynomial, the larger the 
interval on which is provides
a specified accuracy.



Example

 Find the nth Maclaurin polynomials for sin x.

 Solution:

 Start by finding several derivatives of sin x.
 f(x) = sin x f(0) = sin 0 = 0

 f’(x) = cos x f’(0) = cos 0 = 1

 f”(x) = -sin x f”(0) = -sin 0 = 0

 f’’’(x) = -cos x f’’’(0) = -cos 0 = -1

 f””(x) = sin x f””(0) = sin 0 = 0

 and the pattern (0,1,0,-1) continues to repeat for further 
derivatives at 0.



Example continued
 Use
 The successive Maclaurin polynomials for sin x are

 Because every even result is zero, each even-order Maclaurin
polynomial after �0(x) is the same as the preceding odd-
order Maclaurin polynomial and we can write a general nth 
polynomial accordingly.

 �
2� + 1

� = �
2� + 2

� =  � −  
�3

3!
+  
�5

5!
 −  
�7

7!
+  … +  − 1 � ∗

�2� + 1

2� + 1 !
(k=0,1,2,…)



Graph of Example Results

 If you are interested, see the nth Maclaurin polynomials 
for cos x on page 652.



Taylor Polynomials
 Until now, we have focused on approximating a function 

f in the vicinity of x = 0.

 Now we will consider the more general case of 
approximating f in the vicinity of an arbitrary value of �0.

 The basic idea is the same as before;  we want to find 
an nth-degree polynomial p such that its value and the 
values of its first n derivatives match those of f at �0.

 The substitution computations are much like those on 
slide #6 and they result in:



Brook Taylor (1685-1731)

 Taylor polynomials are named after the English 
mathematician Brook Taylor who claims to have 
worked/conversed with Isaac Newton on planetary 
motion and Halley’s comet regarding roots of 
polynomials.

 Supposedly, his writing style was hard to understand and
did not receive credit for many of his innovations on a 
wide range of subjects – magnetism, capillary action, 
thermometers, perspective, and calculus.

 See more information on page 653.

 Remember, Maclaurin series came later and they are a 
more specific case of Taylor series.



Example

 Find the first four Taylor polynomials for ln x about x = 2.

 Solution:

 Let f(x) = ln x f(2) = ln 2

 Find the first three derivatives.

 f’(x) = 
1

�
f’(2) = 

1

2

 f”(x) = - 
1

�2
f”(2) =- 

1

4

 f’’’(x) = 
2

�3
f’’’(2) = 

1

4



Example continued

 Use combined 
with the results from the previous slide and �0 = 2 to get



Sigma Notation for Taylor and 
Maclaurin Polynomials

 We may need to express  
in sigma notation.

 To do this, we use the notation � � (�0) to denote the kth 
derivative of f at x = �0.

 Hence, � 0 (�0) “no derivative” = original function at �0 = f(�0).

 This gives the Taylor polynomial ∑
� = 0

�
� � �0

�!
(� − �0)�

=

�(�0) + f′ �0 x − �0 +
�"(�0)

2!
(� − �0)2 + … +

� � �0

�!
(� − �0)�

 In particular, we can get the Maclaurin polynomial for f(x) as

∑
� = 0

�
� � 0

�!
(� − �0)� =  �(0) + f′ 0 x +

�"(0)

2!
�2 + … +

� � 0

�!
��



Example Find the nth Maclaurin polynomial for 
1

1 − �
 and express it in sigma 

notation.
 Solution:

 Let f(x) = 
1

1 − �
f(0) = 1 = 0!

 Find the first k derivatives at x = 0.

 f’(x) = 
1

(1 − �)2
f’(0) = 1 = 1!

 f”(x) = 
2

(1 − �)3
f”(0) = 2 = 2!

 f’’’(x) = 
3 ∗ 2

(1 − �)4
f’’’(0) = 3!

 f””(x) = 
4 ∗ 3 ∗ 2

(1 − �)5
f””(0) = 4!

and so on

 � � (x) = 
�!

(1 − �)� + 1
 � � (0) = k!

 Substitute into ∑
� = 0

�
� � 0

�!
(� − �0)� =  �(0) + f′ 0)� +

�"(0)

2!
�2 + … +

� � 0

�!
��

from the previous slide.

 �
�
� =  ∑

� = 0

�

�� = 1 + � +  �2 + … + �� (n = 0, 1, 2, …)



Sigma Notation for a Taylor Polynomial

 The computations and substitutions are similar to those in 
the previous example except you use the more general 
form .

 See example 6 on page 655



The nTH Remainder

 It will be convenient to have a notation for the error in 
the approximation � � ≈  �

�
� .

 Therefore, we will let �
�
�  (the nth remainder) denote 

the difference between f(x) and its nth Taylor 
polynomial.

 �
�
�  = f(x) - �

�
� = � � −∑

� = 0

�
� � �0

�!
(� − �0)�

original function – Taylor polynomial

 This can be rewritten as

which is called Taylor’s formula with remainder.



Accuracy of the Approximation � � ≈  �
�
�

 Finding a bound for �
�

(�) gives an indication of the 
accuracy of the approximation � � ≈  �

�
� .

 If you are interested, there is a proof on pages A41-42.

 This bound �
�

(�)  is called the Lagrange error bound.



Example given accuracy

 Use an nth Maclaurin polynomial for �� to approximate e to five 
decimal place accuracy.

 Solution:

 All derivatives of �� = ��.

 On slide #10, we found the nth Maclaurin polynomial for ��.

∑
� = 0

�
��

�!
=  1 + 1� +  

�2

2
+  
�3

6
 + … + 

��

�!

 This gives � =  �1 ≈  ∑
� = 0

�
1

�!
=  1 + 1 +  

12

2
+  

13

6
 + … + 

1�

�!

 Five decimal place accuracy means ± .000005 or less of an error:
 �

�
(�)  ≤  .000005



Example continued
             gives �

�
(�)  ≤   

�

� + 1 !
 ∗  1 − 0 � + 1= 

�

� + 1 !
 

 M is an upper bound of the value of � � + 1 � = �� for x in the interval 
[0,1].

 �� is an increasing function, so its maximum value on the interval 
[0,1] occurs at x = 1: �� ≤ � on this interval which makes M = e for 
this problem.

 �
�

(�)  ≤  
�

� + 1 !
 

 Since e is what we are trying to approximate, it is not very helpful to
have e in the problem.

 e<3 which is less accurate but easier to deal with.

�
�

(�)  ≤  
3

� + 1 !
  

3

� + 1 !
 ≤  .000005 (n+1)! ≥  600,000

 9!=362,880 which is the smallest value of n that gives the required 
accuracy since 10!=3,628,800

 ∑
� = 0

�
��

�!
=  1 + 1� +  

�2

2
+  
�3

6
 + … + 

��

�!
 gives 1 + 1 +  

12

2
+  

13

6
 + … + 

19

9!
≈

2.71828 



Another Accuracy Example

 Use the Remainder Estimation Theorem to find an interval 
containing x=0 throughout which f(x)=cos x can be 

approximated by p(x) = 1 – (
�2

2!
) to three decimal-place 

accuracy.

 Solution:
 f must be differentiable n+1 times on an interval containing the 

number x=0 according to the theorem and cos x is differentiable 
everywhere.

 Similar to f(x)=sin x on slides #12-13, p(x) is both the second and 
third Maclaurin polynomial for cos x.

 When this happens you want to choose the degree of n of the 
polynomial to be as large as possible, so we will take n=3.

 Therefore, we need �3(�)  ≤  .0005



Example continued

 This gives us �3(�)  ≤   
�

3 + 1 !
 ∗  � − 0 3 + 1= 

� � 4

24
  where M is an upper bound for 

� 4 (�) = cos � .

 Since cos � ≤ 1 for every real number x, we 
can take M=1 as that upper bound.

�3(�)  ≤  
� 4

24
 
� 4

24
≤ .0005

� ≤ .3309

 This tells us that one interval is 

[-.3309,.3309] which we can check by 

graphing � � − �(�)

original function – Taylor polynomial



Getting Ready to Race


