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Introduction

 In a local linear approximation, the tangent line to the 
graph of a function is used to obtain a linear 
approximation of the function near the point of 
tangency.

 In this section, we will consider how one might improve 
on the accuracy of local linear approximations by using 
higher-order polynomials as approximating functions.

 We will also investigate the error associated with such 
approximations.



Local Linear Approximations
 Remember from Section 3.5 that the local linear 

approximation of a function f at �0 is 
� � ≈ � �0 + �′(�0)(� − �0)

or more simply � −  �1 ≈�(� − �0) and move  �1.

 This is a polynomial with degree 1 since �1.

 If the graph of a function f has a pronounced “bend” at �0, 
then we can expect that the accuracy of the local linear 
approximation of f at �0 will decrease rapidly as we 
progress away from �0.



Local Quadratic Approximations
 One way to deal with this problem is to approximate the 

function f at �0 by a polynomial p of degree 2.

 We want to find a polynomial so that the value of the 
function p at �0 (point) and the values of its first two 
derivatives (slope and concavity) at �0 match those of 
the original function f at �0 to make it a good “match” for
making approximations since it will remain close to the 
graph of f over a larger interval around �0 than the linear
approximation.



Substitution for Local Quadratic Approximation
 A general formula for a local quadratic approximation f at x = 0 

comes from y=ax2+bx+c:

 �(�) ≈  �0 +  �1� +  �2�
2 p = �0 +  �1� +  �2�

2

 Remembering the requirements from the previous slide will help 
perform the substitutions necessary to find this approximation.
 value of the function p at �0 (point) must match the original function 

f at �0 :  p(0) = f(0)

 values of its first two derivatives (slope and concavity) at �0 must 
match those of the original function f at �0 to make it a good fit: 
p’(0) = f’(0) and p’’(0) = f’’(0)

 Substitution
 p(0) = �0 +  �10 +  �202 = �0 means p(0) = f(0) = �0

 p’(0) = �1 + 2�20 = �1 means p’(0) = f’(0) = �1

 p””(0) = 2�2 means p’’(0) = f’’(0) = 2�2 

and gives �2  = 
f’’(0)

2

 Therefore,  �(�) ≈  



Example

 Find the local linear and quadratic approximations of �� at 
x = 0 and graph y= ��along with the two approximations.

 Solution

 f’(x) = �� and f’’(x) = �� so f(0)=f’(0)=f’’(0)= �0=1

 Linear approximation: y = mx + b = 1x + 1 = x + 1 ≈  ��

 Quadratic approximation: use y = 

  y = 1 + 1� +  
�2

2
≈ ��

 As expected, the quadratic approximation is more accurate
than the local linear approximation (see graph).



Maclaurin Polynomials

 Since the quadratic approximation was better than the 
local linear approximation, might a cubic or quartic 
(degree 4) approximation be better yet?

 To find out, we must extend our work on quadratics to a 
more general idea for higher degree polynomial 
approximations.

 See substitution work similar to that we did for 
quadratics on page 650 for higher degree polynomials.



Colin Maclaurin (1698-1746)

 Maclaurin polynomials are named after the Scottish 
mathematician Colin Maclaurin who received his Master’s
degree and started teaching college math at the age of 
17.  

 He worked to defend Isaac Newton’s methods and ideas 
and create some of his own.

 He also contributed to astronomy, actuarial sciences, 
mapping, etc.

 See more info on page 649

 NOTE:  The Maclaurin polynomials are the special cases 
of the Taylor polynomials (see later slides) in which �0 = 0.



Example
 Find the Maclaurin polynomials �0, �1, �2, �3, ��� �

�
 for ��.

 Solution

 All derivatives of �� are ��

so f(0)=f’(0)=f’’(0)=f’’’(0)=…=� � 0 =  �0=1

 �0 = f(0) = 1

 We already found �1 &  �2 earlier (linear and quadratic approx.)

 �1 = x + 1 and �2 = 1 + 1� +  
�2

2

 Cubic approximation: use �3 = 

�3 = 1 + 1� +  
�2

2
+  
�3

6

 General:  use 

 �
�
 =1 + 1� +  

�2

2
+  
�3

6
 + … + 

��

�!



Analysis of Example Results

 The graphs of 
�1(�),  �2(�),  �3(�) are all very 
good “matches” for �� near 
x=0 so they are good 
approximations near 0.

 The farther x is from 0, the 
less accurate these 
approximations become.

 Usually, the higher the 
degree the Maclaurin 
polynomial, the larger the 
interval on which is provides
a specified accuracy.



Example

 Find the nth Maclaurin polynomials for sin x.

 Solution:

 Start by finding several derivatives of sin x.
 f(x) = sin x f(0) = sin 0 = 0

 f’(x) = cos x f’(0) = cos 0 = 1

 f”(x) = -sin x f”(0) = -sin 0 = 0

 f’’’(x) = -cos x f’’’(0) = -cos 0 = -1

 f””(x) = sin x f””(0) = sin 0 = 0

 and the pattern (0,1,0,-1) continues to repeat for further 
derivatives at 0.



Example continued
 Use
 The successive Maclaurin polynomials for sin x are

 Because every even result is zero, each even-order Maclaurin
polynomial after �0(x) is the same as the preceding odd-
order Maclaurin polynomial and we can write a general nth 
polynomial accordingly.

 �
2� + 1

� = �
2� + 2

� =  � −  
�3

3!
+  
�5

5!
 −  
�7

7!
+  … +  − 1 � ∗

�2� + 1

2� + 1 !
(k=0,1,2,…)



Graph of Example Results

 If you are interested, see the nth Maclaurin polynomials 
for cos x on page 652.



Taylor Polynomials
 Until now, we have focused on approximating a function 

f in the vicinity of x = 0.

 Now we will consider the more general case of 
approximating f in the vicinity of an arbitrary value of �0.

 The basic idea is the same as before;  we want to find 
an nth-degree polynomial p such that its value and the 
values of its first n derivatives match those of f at �0.

 The substitution computations are much like those on 
slide #6 and they result in:



Brook Taylor (1685-1731)

 Taylor polynomials are named after the English 
mathematician Brook Taylor who claims to have 
worked/conversed with Isaac Newton on planetary 
motion and Halley’s comet regarding roots of 
polynomials.

 Supposedly, his writing style was hard to understand and
did not receive credit for many of his innovations on a 
wide range of subjects – magnetism, capillary action, 
thermometers, perspective, and calculus.

 See more information on page 653.

 Remember, Maclaurin series came later and they are a 
more specific case of Taylor series.



Example

 Find the first four Taylor polynomials for ln x about x = 2.

 Solution:

 Let f(x) = ln x f(2) = ln 2

 Find the first three derivatives.

 f’(x) = 
1

�
f’(2) = 

1

2

 f”(x) = - 
1

�2
f”(2) =- 

1

4

 f’’’(x) = 
2

�3
f’’’(2) = 

1

4



Example continued

 Use combined 
with the results from the previous slide and �0 = 2 to get



Sigma Notation for Taylor and 
Maclaurin Polynomials

 We may need to express  
in sigma notation.

 To do this, we use the notation � � (�0) to denote the kth 
derivative of f at x = �0.

 Hence, � 0 (�0) “no derivative” = original function at �0 = f(�0).

 This gives the Taylor polynomial ∑
� = 0

�
� � �0

�!
(� − �0)�

=

�(�0) + f′ �0 x − �0 +
�"(�0)

2!
(� − �0)2 + … +

� � �0

�!
(� − �0)�

 In particular, we can get the Maclaurin polynomial for f(x) as

∑
� = 0

�
� � 0

�!
(� − �0)� =  �(0) + f′ 0 x +

�"(0)

2!
�2 + … +

� � 0

�!
��



Example Find the nth Maclaurin polynomial for 
1

1 − �
 and express it in sigma 

notation.
 Solution:

 Let f(x) = 
1

1 − �
f(0) = 1 = 0!

 Find the first k derivatives at x = 0.

 f’(x) = 
1

(1 − �)2
f’(0) = 1 = 1!

 f”(x) = 
2

(1 − �)3
f”(0) = 2 = 2!

 f’’’(x) = 
3 ∗ 2

(1 − �)4
f’’’(0) = 3!

 f””(x) = 
4 ∗ 3 ∗ 2

(1 − �)5
f””(0) = 4!

and so on

 � � (x) = 
�!

(1 − �)� + 1
 � � (0) = k!

 Substitute into ∑
� = 0

�
� � 0

�!
(� − �0)� =  �(0) + f′ 0)� +

�"(0)

2!
�2 + … +

� � 0

�!
��

from the previous slide.

 �
�
� =  ∑

� = 0

�

�� = 1 + � +  �2 + … + �� (n = 0, 1, 2, …)



Sigma Notation for a Taylor Polynomial

 The computations and substitutions are similar to those in 
the previous example except you use the more general 
form .

 See example 6 on page 655



The nTH Remainder

 It will be convenient to have a notation for the error in 
the approximation � � ≈  �

�
� .

 Therefore, we will let �
�
�  (the nth remainder) denote 

the difference between f(x) and its nth Taylor 
polynomial.

 �
�
�  = f(x) - �

�
� = � � −∑

� = 0

�
� � �0

�!
(� − �0)�

original function – Taylor polynomial

 This can be rewritten as

which is called Taylor’s formula with remainder.



Accuracy of the Approximation � � ≈  �
�
�

 Finding a bound for �
�

(�) gives an indication of the 
accuracy of the approximation � � ≈  �

�
� .

 If you are interested, there is a proof on pages A41-42.

 This bound �
�

(�)  is called the Lagrange error bound.



Example given accuracy

 Use an nth Maclaurin polynomial for �� to approximate e to five 
decimal place accuracy.

 Solution:

 All derivatives of �� = ��.

 On slide #10, we found the nth Maclaurin polynomial for ��.

∑
� = 0

�
��

�!
=  1 + 1� +  

�2

2
+  
�3

6
 + … + 

��

�!

 This gives � =  �1 ≈  ∑
� = 0

�
1

�!
=  1 + 1 +  

12

2
+  

13

6
 + … + 

1�

�!

 Five decimal place accuracy means ± .000005 or less of an error:
 �

�
(�)  ≤  .000005



Example continued
             gives �

�
(�)  ≤   

�

� + 1 !
 ∗  1 − 0 � + 1= 

�

� + 1 !
 

 M is an upper bound of the value of � � + 1 � = �� for x in the interval 
[0,1].

 �� is an increasing function, so its maximum value on the interval 
[0,1] occurs at x = 1: �� ≤ � on this interval which makes M = e for 
this problem.

 �
�

(�)  ≤  
�

� + 1 !
 

 Since e is what we are trying to approximate, it is not very helpful to
have e in the problem.

 e<3 which is less accurate but easier to deal with.

�
�

(�)  ≤  
3

� + 1 !
  

3

� + 1 !
 ≤  .000005 (n+1)! ≥  600,000

 9!=362,880 which is the smallest value of n that gives the required 
accuracy since 10!=3,628,800

 ∑
� = 0

�
��

�!
=  1 + 1� +  

�2

2
+  
�3

6
 + … + 

��

�!
 gives 1 + 1 +  

12

2
+  

13

6
 + … + 

19

9!
≈

2.71828 



Another Accuracy Example

 Use the Remainder Estimation Theorem to find an interval 
containing x=0 throughout which f(x)=cos x can be 

approximated by p(x) = 1 – (
�2

2!
) to three decimal-place 

accuracy.

 Solution:
 f must be differentiable n+1 times on an interval containing the 

number x=0 according to the theorem and cos x is differentiable 
everywhere.

 Similar to f(x)=sin x on slides #12-13, p(x) is both the second and 
third Maclaurin polynomial for cos x.

 When this happens you want to choose the degree of n of the 
polynomial to be as large as possible, so we will take n=3.

 Therefore, we need �3(�)  ≤  .0005



Example continued

 This gives us �3(�)  ≤   
�

3 + 1 !
 ∗  � − 0 3 + 1= 

� � 4

24
  where M is an upper bound for 

� 4 (�) = cos � .

 Since cos � ≤ 1 for every real number x, we 
can take M=1 as that upper bound.

�3(�)  ≤  
� 4

24
 
� 4

24
≤ .0005

� ≤ .3309

 This tells us that one interval is 

[-.3309,.3309] which we can check by 

graphing � � − �(�)

original function – Taylor polynomial



Getting Ready to Race


