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Introduction

O In a local linear approximation, the tangent line to the
graph of a function is used to obtain a linear
approximation of the function near the point of
tangency.

O In this section, we will consider

O We will also investigate the associated with such
approximations.



Local Linear Approximations

Remember from Section 3.5 that the local linear
approximation of a function fat is

and move

This is a polynomial with degree 1 since

If the graph of a function f has a pronounced “bend” at ,

then we can expect that the accuracy of the local linear
approximation of f at  will decrease rapidly as we

progress away from



Local Quadratic Approximations

One way to deal with this problem is to approximate the
function fat by a polynomial p of degree 2.

We want to find a polynomial so that the

for

making approximations since it will remain close to the
graph of f over a larger interval around than the linear

approximation.



Substitution for Local Quadratic Approximation
O A general formula for a local quadratic approximation fat x = 0
comes from y=ax?+bx+c:

p:

O Remembering the requirements from the previous slide will help
perform the substitutions necessary to find this approximation.

o

o

O Substitution
O p(0) = = means p(0) = f(0) =
O p’(0) = means p’(0) = f'(0) =

O p""(0) =2 means p’(0) = f”(0) = 2

f”(ﬂ)

pA

IZ

f(0) + f(0)x +

O Therefore, s




o

O 0 0 O

Example

Find the local linear and quadratic approximations of at
x = 0 and graph y= along with the two approximations.

Solution
f'(x) = and f"(x) = so f(0)=f'(0)=f"(0)= =1

Linear approximation: y=mx+b=1x+1=x+1

uadratic approximation: use y = , f7(0)
Q PP L /0) + f(Ox + —,

.).‘2

y=

As expected, the quadratic approximation is more accurate
than the local linear approximation (see graph).



Maclaurin Polynomials

Since the quadratic approximation was better than the
local linear approximation, might a cubic or quartic
(degree 4) approximation be better yet?

To find out, we must extend our work on quadratics to a
more general idea for higher degree polynomial
approximations.

9.7.2 perFiNiTION If f can be differentiated n times at 0, then we define the nth
Maclaurin polynomial for f to be

f”{ ffﬂ"{}} 3

Pu(x) = £(0) + f'(0)x + 24

See substitution work similar to that we did for
quadratics on page 650 for higher degree polynomials.



Colin Maclaurin (1698-1746)

O Maclaurin polynomials are named after the Scottish
mathematician Colin Maclaurin who received his Master’s
degree and started teaching college math at the age of
17.

O He worked to defend Isaac Newton’s methods and ideas
and create some of his own.

O He also contributed to astronomy, actuarial sciences,
mapping, etc.

O See more info on page 649
O NOTE:



(o BN o

Example

Find the Maclaurin polynomials for

Solution

All derivatives of are

so f(0)=f'(0)=f"(0)=f""(0)=...= =1
=f(0) =1
We already found earlier (linear and quadratic approx.)
o =X + 1 and =

fH(O) > f_r.u(-o) x3

f(0) + f(0)x + Tx" + =50

Cubic approximation: use =

'@ .2, 7O 3

Pn(@) = fO) + fOx + ——=x"+ —

+...+

General: use



Analysis of Example Results

The graphs of

are all very
good “matches” for near
x=0 so they are good
approximations near 0.

The farther x is from 0, the
less accurate these
approximations become.




Example

O Find the nth Maclaurin polynomials for sin x.
O Solution:

O Start by finding several derivatives of sin x.

O f(x) = sin x f(0) =sin0 =0

O f'(x) = cos x f'(0) =cos0 =1

O f"(x) = -sin x f"(0) = -sin0 =0

O f"'(x) = -cos x f""(0) = -cos 0 = -1

O f""(x) = sin x f"”(0) =sin0 =0

O and the pattern (0,1,0,-1) continues to repeat for further

derivatives at 0.



Example continued

f70) ,  f"(0) 3

*(n) ¢

(0)

" = T —— x"
. s | n.

O The successive Maclaurin polynomials for sin x are

polx) =0 < U oo
=0 P‘S(X)=E}+I'+U—§i'+0~|_w

gk =0+ =0 2
i Ps(x)=0+4+x+0—— &
p3(x) =0+x+0— E; 3!
3

3 3 W0 g g
134--(I)I=0'1‘X+0—%-!'+0 ) +I-|—[]3' +

O Because every even result is zero, each even-order Maclaurin

o

polynomial after ,(x) is the same as the preceding odd-

order Maclaurin polynomial and we can write a general nth
polynomial accordingly.

(k=0,1,2,...)



Graph of Example Results

y=SsInx

P(X)

p,(x)

If you are interested, see the nth Maclaurin polynomials
for cos x on page 652.



Taylor Polynomials

Until now, we have focused on approximating a function
f in the vicinity of x = 0.

Now we will consider the more general case of
approximating f in the vicinity of an arbitrary value of

The basic idea is the same as before;

The substitution computations are much like those on
slide #6 and they result in:

9.7.3 perFINITION If f can be differentiated n times at xp. then we define the nth
laylor polynomial for f about x = xy to be

p"('r}uffrﬂ}_l_f (Iﬂ)':r— Iﬂ}—|— f ( I}) . _Iﬂ)z

" (n)
Ll ){1—.::) P {Iﬂ}(x—xu)” 9)

3! n!




Brook Taylor (1685-1731)

o

Taylor polynomials are named after the English
mathematician Brook Taylor who claims to have
worked/conversed with Isaac Newton on planetary
motion and Halley’s comet regarding roots of
polynomials.

Supposedly, his writing style was hard to understand and
did not receive credit for many of his innovations on a
wide range of subjects — magnetism, capillary action,
thermometers, perspective, and calculus.

See more information on page 653.

Remember, Maclaurin series came later and they are a
more specific case of Taylor series.



Example

O Find the first four Taylor polynomials for In x about x = 2.
O Solution:
O Letf(x) =In X f(2) =1In 2

O Find the first three derivatives.

o fi(x) = f(2) =
o f(x) = - f7(2) =-

o f"(x) = f(2) =



Example continued

f"(xp)

Pa(x) = f(x0) + f'(Xo)(x — x0) + == (x — x0)’
f"(x0) 3 ™ (x0) "
i —Xg) =t = ]
Use 3! ¥=30) n! G combined

with the results from the previous slide and to get



Sigma Notation for Taylor and
Maclaurin Polynomials

We may need to express o -
in sigma notation. Pa(x) = f(xo) + f'xo)(x — x0) + = (x — x0)"

fﬂ.f( 0)

3 (x —x0)> + -

(x —xp)"

To do this, we use the no
derivative of f at x =

f("’( X()
n

Hence, “no derivative” = original functionat = f( ).

This gives the Taylor polynomial

In particular, we can get the Maclaurin polynomial for f(x) as




o E%lﬁ,‘rﬂﬂl %aclaurin polynomial for and express it in sigma
notation.

O Solution:

O Let f(x) = f(0) =1 = 0!
O Find the first k derivatives at x = 0.

o f'(x) = f'(0) =
O f(x) = f’(0) = 2 = 2!
o f""'(x) = f"’(0) =
o f"(x) = f""(0) = 4!
and so on
o SIS (0) = k!

O Substitute into

from the previous slide.



Sigma Notation for a Taylor Polynomial

O The computations and substitutions are similar to those in

the previous example except you use the more general

form e f(xo)+f(r0)(x—~—xo)+-f2(—l)-( — xp)?

m (n)
f (X—X)-'— fn(O)(x_ O)n

O See example 6 on page 655



The nTH Remainder

O It will be convenient to have a notation for the error in
the approximation

O Therefore, we will let (the nth remainder) denote
the difference between f(x) and its nth Taylor
polynomial.

o = f(x) -

original function - Taylor polynomial

B (x0) . .
Y ——(x —x0)" + Ry(x)

which is called



Accuracy of the Approximation

Finding a bound for gives an indication of the
accuracy of the approximation

9.7.4 THEOREM (The Remainder Estimation Theorem) If the function f can be differenti-
ated n + 1 times on an interval containing the number xy, and if M is an upper bound
for | f"+V(x)| on the interval, that is, | f"+V(x)| < M for all x in the interval, then

M
IR, (x)] < x — xp|" ! (14)
(n+ 1)!

for all x in the interval.

If you are interested, there is a proof on pages A41-42.
This bound is called the



o

Example given accuracy

Use an nth Maclaurin polynomial for to approximate e to five
decimal place accuracy.

Solution:

All derivatives of =

On slide #10, we found the nth Maclaurin polynomial for

+ ... +

This gives + ...+

Five decimal place accuracy means or less of an error:
.000005




Example continued

gives =

gound of the value of for x in the interval

[0,1].

is an increasing function, so its maximum value on the interval
[0,1] occurs at x = 1: on this interval which makes M = e for
this problem.

Since e is what we are trying to approximate, it is not very helpful to
have e in the problem.

e<3 which is less accurate but easier to deal with.
(n+1)! 600,000

91=362,880 which is the smallest value of n that gives the required
accuracy since 10!=3,628,800

+ ... + gives S



Another Accuracy Example

O Use the Remainder Estimation Theorem to find an interval
containing x=0 throughout which f(x)=cos x can be

approximated by p(x) = 1 - ( ) to three decimal-place
accuracy.

O Solution:

O f must be differentiable n+1 times on an interval containing the
number x=0 according to the theorem and cos x is differentiable
everywhere.

O Similar to f(x)=sin x on slides #12-13, p(x) is both the second and
third Maclaurin polynomial for cos x.

O When this happens you want to choose the degree of n of the
polynomial to be as large as possible, so we will take n=3.

O Therefore, we need .0005



Example continued

O This gives us =

where M is an upper bound for

O Since for every real number x, we
can take M=1 as that upper bound.

O This tells us that one interval is
[-.3309,.3309] which we can check by
graphing

original function — Taylor polynomial




Getting Ready to Race




