7-12 Science Essential Learnings		
Grade level	Enduring Understandings (4)	Essential learning (8-16)

 Systems: Students will be able to describe recognize, and compare, interpolate, and extrapolate patterns. Students will be able to describe recognize, compare, interpolate, and extrapolate patterns. Data: Students will be able to collect, display, process, and analyze datu Use logical reasoning and imagination to develop explanations and predictions. Connections: Students will be able to make connections between causes and integrate at a scientific discoveries into a historical framework. Procedures, lat all cubs do not look alike and that specialized fuels in multicellus and recognize direction. Recognize that all cubs do not look alike and that specialized into tisses and organism are organized into tisses and organism are organized into tisses and organism. Becompare that all cubs do not look alike and that specialized fuels in multicellus and predimers with a historical framework. Recognize that all cubs do not look alike and that specialized fuels and yrasites are reaction. Recognize that all cubs do not look alike and that specialized fuels and virus spectro ystems and areas spin fictor the body functions; recognize that cuss, shat perform specialized fuels and yrasites. Explain how viruses, batteria, fungi and parasites may infect the body functions; recognize that cus cus rou tiffe functions; and that thee spin and yrasites. Use the presence of the cell wall and chioroplasts to distinguish between plant and animal cells. Use the presence of the cell wall and chioroplasts to distinguish between plant and animal cells. Use the relationships among them. 	7-12		7th Grade Life Science:
	Jake Nelson, Dave Abel, Josh Abraham, Martin Healey,	systems within the natural world. Patterns: Students will be able to describe, recognize, compare, interpolate, and extrapolate patterns within the natural world. Data: Students will be able to collect, display, process, and analyze data Use logical reasoning and imagination to develop explanations and predictions. Connections: Students will be able to make connections between causes and effects; these would include natural events or human events. Historical Significance: Students will be able to place major scientific	 scientific investigations, prior expectations can create bias and similar investigations may produce different results. Plan and conduct a controlled experiment to test a hypothesis, generate a scientific conclusion, and examine explanations proposed by others. Determine and use appropriate safety procedures, tools, measurement, graphs and mathematical analyses to describe and investigate natural and designed systems. Recognize that all substances are composed of one or more elements, describe the differences between elements and compounds, and recognize that a chemical equation describes a reaction. Recognize that all cells do not look alike and that specialized cells in multicellular organisms are organized into tissues and organs that perform specialized functions. Describe how organs in the respiratory, circulatory, digestive, nervous, skeletal, muscular, skin and excretory systems interact to serve the needs of vertebrate organisms. Explain how viruses, bacteria, fungi and parasites may infect the human body and interfere with normal body functions; recognize that cells carry out life functions, and that these functions are carried out in a similar way in all organisms, including animals, plants, fungi, bacteria, and protists. Use the presence of the cell wall and chloroplasts to distinguish between plant and animal cells. Identify a variety of populations and communities in an ecosystem and

Grade level Enduring Understandings (4)	Essential learning (8-16)
---	---------------------------

11. Compare and contrast the roles of
organisms within the following
relationships: predator/prey,
parasite/host, and
producer/consumer/decomposer.
12. Describe the roles and relationships
among producers, consumers, and
decomposers in changing energy from
one form to another in a food web within
an ecosystem.
13. Explain how the number of populations
an ecosystem can support depends on
the biotic resources available as well as
abiotic factors.
14. Recognize that producers use the energy
from sunlight to make sugars from carbon
dioxide and water through a process
called photosynthesis.
15. Recognize that cells contain genes and
that each gene carries a single unit of
information; recognize that organisms get
about half of the genes inherited come from each parent.
16. Describe ways that human activities can
change the populations and communities
in an ecosystem.
in an ecosystem.
Ath Crade Forth and Crass Science.
8th Grade Earth and Space Science:
1. Recognize that the Earth is composed of
 Recognize that the Earth is composed of layers and describe the properties of
 Recognize that the Earth is composed of layers and describe the properties of these layers.
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity.
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates.
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits.
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape.
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape. Interpret layers of sedimentary rocks and
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape. Interpret layers of sedimentary rocks and their fossils to infer ages of rocks and
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape. Interpret layers of sedimentary rocks and their fossils to infer ages of rocks and past geological events including
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape. Interpret layers of sedimentary rocks and their fossils to infer ages of rocks and past geological events including extinctions.
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape. Interpret layers of sedimentary rocks and their fossils to infer ages of rocks and past geological events including extinctions. Identify basic rock and mineral
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape. Interpret layers of sedimentary rocks and their fossils to infer ages of rocks and past geological events including extinctions. Identify basic rock and mineral characteristics.
 Recognize that the Earth is composed of layers and describe the properties of these layers. Correlate the distribution of Ocean trenches, mid ocean ridges and mountain ranges to tectonic activity. Recognize that major geologic events are the result to slow moving tectonic plates. Landforms result from processes such as eruptions, weathering, erosion, and deposits. Explain how weathering erosion and general glacial activity has shaped Minnesota's landscape. Interpret layers of sedimentary rocks and their fossils to infer ages of rocks and past geological events including extinctions. Identify basic rock and mineral characteristics. Recognize that Rock composition and

Grade level	Enduring Understandings (4)	Essential learning (8-16)
-------------	-----------------------------	---------------------------

10. Recognize that oceans have a major effect on climate.
11. Relate uneven heating of the Earth to
global weather patterns. Local regional
and global weather patterns will be
interpreted.
12. Describe how the composition and
structure of the Earth's atmosphere
affects energy absorption, climate and
distribution of gasses.
13. Analyse changes in wind direction,
temperature, humidity and air pressure.
Relate these concepts to weather fronts.
14. Relate global weather patterns to
patterns in regional and local weather.
15. Describe the location composition and use of major water sources.
16. Describe how the water cycle distributes
materials and purifies water sources.
17. Recognize that the sun is an average
star. Also one of billions and billions of
stars and the closest to the Earth.
18. Describe how gravity and inertia work
together to keep objects in space in
predictable motions.
19. Compare sizes composition and location
of the solar system's planets and moons.
20. Describe how mineral and fossil fuel resources have formed over millions of
years and explains how these resources are finite and non-renewable over
human time lines.
Physical Science:
1. Describe the role of valence electrons in the formation of chemical bonds.
2. Explain how the rearrangement of atoms
in a chemical reaction illustrates the law
of conservation of mass.
3. Describe a chemical reaction using words
and symbolic equations. For example:
The reaction of hydrogen gas with over gas can be written: $2H + 0 \rightarrow 0$
oxygen gas can be written: $2H_2 + O_2 \rightarrow 2H_2O$.
4. Relate exothermic and endothermic
chemical reactions to temperature and
energy changes.
5. Recognize that inertia is the property of
an object that causes it to resist changes
an object that causes it to resist changes in motion.
in motion.

Grade level Enduring Understandings (4) Essential learning (8-16)	
---	--

 7. Demonstrate that whenever one o exerts force on another, a force e magnitude and opposite in direct exerted by the second object back the first object. 8. Use Newton's universal law of grav to describe and calculate the attra- between massive objects based o distance between them. For exan Calculate the weight of a person o different planets using data of the and radius of the planets. 9. Identify the energy forms and expli- transfers of energy involved in the operation of common devices. For example: Light bulbs, electric mot automobiles or bicycles. 10. Calculate and explain the energy, and power involved in energy tran- in a mechanical system. For exan Compare walking and running up down steps. 11. Describe how energy is transferren through sound waves and how pri loudness are related to wave prop of frequency and amplitude. 12. Compare fission and fusion in terr the reactants, the products and tf conversion from matter into energ produces energy in the sun. Ano example: The use of chain reactio nuclear reactors. 13. Describe the properties and uses forms of electromagnetic radiatio radio frequencies through gamma radiation. For example: Compare energy of microwes and X-rays. 	yual in on is on itation ction n the pple: n mass nin the ors, work sfers ple: or d ch and erties ns of e
--	--

Grade level Enduring Understandings (4)	Essential learning (8-16)
---	---------------------------

Biology:
1. Explain how cell processes are influenced
by internal and external factors, such as
pH and temperature, and how cells and
organisms respond to changes in their
environment to maintain homeostasis.
2. Describe how the functions of individual
organ systems are integrated to
maintain homeostasis in an organism.
3. Recognize that cells are composed
primarily of a few elements (carbon,
hydrogen, oxygen, nitrogen,
phosphorus, and sulfur), and describe
the basic molecular structures and the
primary functions of carbohydrates,
lipids, proteins and nucleic acids.
4. Recognize that the work of the cell is
carried out primarily by proteins, most
of which are enzymes, and that protein
function depends on the amino acid
sequence and the shape it takes as a
consequence of the interactions
between those amino acids.
5. Describe how viruses, prokaryotic cells,
and eukaryotic cells differ in relative
size, complexity and general
structure.Explain the function and
importance of cell organelles for
prokaryotic and/or eukaryotic cells as
related to the basic cell processes of
respiration, photosynthesis, protein
synthesis and cell reproduction.
6. Compare and contrast passive transport
(including osmosis and facilitated
transport) with active transport such as
endocytosis and exocytosis.
7. Explain the process of mitosis in the
formation of identical new cells and
maintaining chromosome number
during asexual reproduction.Use the
processes of mitosis and meiosis to
explain the advantages and
disadvantages of asexual and sexual
reproduction.
8. Describe factors that affect the carrying
capacity of an ecosystem and relate
these to population growth. Explain how
ecosystems can change as a result of the
introduction of one of more new
species. For example: The effect of
migration, localized evolution or disease
organism.

Grade level E	induring Understandings (4)	Essential learning (8-16)
---------------	-----------------------------	---------------------------

Grade level	Enduring Understandings (4)	Essential learning (8-16)
-------------	-----------------------------	---------------------------

 Explain how competition for finite resources and the changing environment promotes natural selection on offspring survival, depending on whether the offspring have characteristics that are advantageous or disadvantageous in the new environment. Explain how genetic variation between two populations of a given species is due, in part, to different selective pressures acting independently on each population and how, over time, these differences can lead to the development of new species. Describe the social, economic, and ecological risks and benefits of biotechnology in agriculture and medicine. For example: Selective breeding, genetic engineering, and antibiotic development and use. Describe the social, economic and ecological risks and benefits of changing a natural ecosystem as a result of human activity. For example: Changing the temperature or composition of water, air or soil; altering the populations and communities, developing artificial ecosystems; or changing the use of land or water. Describe contributions from diverse cultures, including Minnesota American Indian tribes and communities, to the understanding of interactions among humans and living systems. For example: American Indian understanding of sustainable land use practices. Describe how some diseases can sometimes be predicted by genetic testing and how this affects parental and community decisions. Explain how the body produces antibobies to fight disease and how vaccines assist this process.Describe how the immune system sometimes attacks some of the body's own cells and how some allergic reactions are caused by the body's immune responses to usually harmless environmental substances.

 25. Explain how environmental factors and personal decisions, such as water quality, air quality and smoking affect personal and community health. Recognize that a gene mutation in a cell can result in uncontrolled cell division called cancer, and how exposure of cells to certain chemicals and radiation increases mutations and thus increases the chance of cancer. 26. Recognize that cells repeatedly divide to make more cells for growth and repair.
 Chemistry: 1. Explain the political, societal, economic and environmental impact of chemical products and technologies. For example: Pollution effects, atmospheric changes, petroleum products, material use or waste disposal. 2. Use significant figures and an understanding of accuracy and precision in scientific measurements to determine and express the uncertainty of a result. 3. Explain the relationship of an element's position on the periodic table to its atomic number and electron configuration. 4. Identify and compare trends on the periodic table, including reactivity and relative sizes of atoms and ions; use the trends to explain the properties of subgroups, including metals, non-metals, alkali metals, alkaline earth metals, halogens and noble gases. 5. Explain how elements combine to form compounds through ionic and covalent bonding. 6. Compare and contrast the structure, properties and uses of organic compounds, such as hydrocarbons, alcohols, sugars, fats and proteins. 7. Use IUPAC (International Union of Pure and Applied Chemistry) nomenclature to write chemical formulas and name molecular and ionic compounds, including those that contain polyatomic ione
 ions. 8. Determine the molar mass of a compound from its chemical formula and a table of atomic masses; convert the mass of a molecular substance to moles, number of particles, or volume of

Grade level

Enduring Understandings (4)

Essential learning (8-16)

Grade level Enduring Understandings (4)	Essential learning (8-16)
---	---------------------------

 gas at standard temperature and pressure. 9. Determine percent composition, empirical formulas and molecular formulas of simple compounds. 10. Describe the dynamic process by which solutes dissolve in solvents, and calculate concentrations, molarity and parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the lows for conservation of mass and constant composition. 15. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships. (Conservation effect the rate of a chemical reaction, including relationship, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions are for mass of a chemical reaction, including temperature, pressure, notice and then tot all chemical reactions are for some sheed. 19. Use kinetic molecular theory to explain the behavior of gases and the relationship anong temperature, pressure, volume and the number of particles. 	
 9. Determine percent composition, empirical formulas and molecular formulas of simple compounds. 10. Describe the dynamic process by which solutes dissolve in solvents, and calculate soncentrations, including percent concentration, molarity and parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	gas at standard temperature and
 empirical formulas and molecular formulas of simple compounds. 10. Describe the dynamic process by which solutes dissolve in solvents, and calculate concentrations, including percent concentrations, including percent concentration, molarity and parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, reaction, ill occur. 13. Use solubility of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including nolarity, mole/mass relationships, mas/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions, particle size, surface area and catalyst. 19. Use the kinetic molecular theory to explain how changes in energy content affect the trate of a chemical reaction, gloud and gaseous phases). 20. Use the kinetic molecular theory to explain how changes in energy content affect the relationship among temperature, pressure, would and the number of 	•
 formulas of simple compounds. 10. Describe the dynamic process by which solutes dissolve in solvents, and calculate concentration, nolarity and parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, single replacement, single replacement, single replacement or single replacement or single replacement reaction will occur. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molerity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that and all chemical reactions are neversible and then therey to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain how changes in energy content affect the relationship mong temperature, pressure, volume and the number of 	
 10. Describe the dynamic process by which solutes dissolve in solvents, and calculate concentrations, including percent concentrations, including percent concentrations, including parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including notarity, mole/mass relationships in a conservation of mass to describe and calculate relations and percent yield. 19. Describe the factors that affect the rate of a chemical reaction, including notarity. 10. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous) phases in energy content affect 10. Use the kinetic molecular theory to explain how changes in energy content affect 11. Use the abay or ogase and the relationship and present; wolume and the how or ogases and the relationship among temperature, pressure, volume and the number of 	
 solutes dissolve in solvents, and calculate concentrations, including percent concentration, molarity and parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships in a chemical reaction, including the laws of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, just, w. 13. Recognize that fact the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that null chemical reactions are reversible and that null chemical reactions are neversible and moler theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liq	
 aclulate concentrations, including percent concentration, molarity and parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain the behavior of gases and the relations pressure, withing, concentration, particle size, surface area and catalyst. 19. Kinetic molecular theory to explain the behavior of gases and the relations pressure, with reactions go to completion. 20. Use the kinetic molecular theory to explain the behavior of gases and the relations pressure, withing areacous phases). 20. Use the kinetic molecular theory to gases and the relationship among temperature, pressure, volume and the number of pressure withing and percent appearement and percent and percent and percent and percent and perc	
 percent concentration, molarity and parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement or single replacement or single replacement or single replacement or solution. 13. Buse solubility and activity of ions to determine whether a double replacement or single replacement or solution. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships in as chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not al chemical reactions are reversible and that not al chemical reactions are reversible and that not al chemical reactions are reversible and the there and catelyst. 18. Recognize that some chemical reactions are reversible and that not al chemical reactions are reversible and that not al chemical reactions are reversible and that not al chemical reactions are reversible and the not al chemical reactions are reversible and the not al chemical reactions are reversible and the not al chemical reactions parties, yourned and the combard of gases and t	
 parts per million. 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction and predict the products of an acid-base reaction. 13. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, particle size, surface area and catalyst. 18. Recognize that some chemical areations are reversible and that not al chemical reactions are reversible and that not al chemical reaction and percent yield. 19. Use kinetic molecular theory to explain the behavior of gases and the relationship amos position. 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship amos presence. 21. Use kinetic molecular theory to explain the behavior of gases and the relationship amog temperature, pressure, volume and the number of 	
 11. Explain the role of solubility of solids, liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mising, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 liquids and gases in natural and designed systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 systems. For example: The presence of heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chamical reaction, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reaction, particle and catalyst. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of mater (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 heavy metals in water and the atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chaty. 18. Recognize that some chemical reactions are reversible and that not all chemical reaction, particle size, surface area and catalyst. 19. Use the item of completion. 19. Use the item of completion. 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 atmosphere. Another example: Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 Development and use of alloys. 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, particle size, surface area and catalyst. 18. Recognize that on all chemical reactions are reversible and that not all chemical reactions. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 12. Classify chemical reactions as double replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions postion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 	
 replacement, single replacement, synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that ont all chemical reactions, including temperature, pressure, solution the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationshipa mong temperature, pressure, volume and the number of 	
 synthesis, decomposition or combustion. 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 13. Use solubility and activity of ions to determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions and catalyst. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 determine whether a double replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that on all chemical reactions go to completion. 19. Use the kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 replacement or single replacement reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 reaction will occur. 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 14. Relate the properties of acids and bases to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 to the ions they contain and predict the products of an acid-base reaction. 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 15. Balance chemical equations by applying the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 the laws of conservation of mass and constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	products of an acid-base reaction.
 constant composition. 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	15. Balance chemical equations by applying
 16. Use the law of conservation of mass to describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 describe and calculate relationships in a chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	-
 chemical reaction, including molarity, mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 mole/mass relationships, mass/volume relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	-
 relations, limiting reactants and percent yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 yield. 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 17. Describe the factors that affect the rate of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 of a chemical reaction, including temperature, pressure, mixing, concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	-
temperature, pressure, mixing, concentration, particle size, surface area and catalyst.18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion.19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases).20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of	
 concentration, particle size, surface area and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	_
 and catalyst. 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 18. Recognize that some chemical reactions are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
 are reversible and that not all chemical reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	-
reactions go to completion. 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of	-
 19. Use kinetic molecular theory to explain how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of 	
how changes in energy content affect the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of	
the state of matter (solid, liquid and gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of	
gaseous phases). 20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of	
20. Use the kinetic molecular theory to explain the behavior of gases and the relationship among temperature, pressure, volume and the number of	
explain the behavior of gases and the relationship among temperature, pressure, volume and the number of	
relationship among temperature, pressure, volume and the number of	-
pressure, volume and the number of	
particles.	
	-

Grade level Enduring Understandings (4)	Essential learning (8-16)
---	---------------------------

 Physics I: Describe changes in society that have resulted from significant discoveries and advances in technology in physics. For example: Transistors, generators, radio/television, or microware overs. Use significant figures and an understanding of accuracy and precision in scientific measurements to determine and express the uncertainty of a result. Use vectors and free-body diagrams to determine figures and an acceleration of objects in two-dimensional space. Apply Newton's three laws of motion to calculate and analyze the effect of forces and momentum on motion. Use gravitational force to explain the motion of objects near Earth and in the universe. Explain and calculate the work, power, potential energy and kinetic energy involved in objects moring under the influence of gravity and other mechanical forces. Describe and calculate the change in velocity for objects when forces are applied perpendicular to the direction of motion. For example: Didjects in orbit. Use conservation of energy to analyze an elastic collision of two solid objects in one-dimensional motion. Describe and calculate the change in velocity for objects when forces are applied perpendicular to the direction of motion. For example: Didjects in orbit. Use conservation of energy to analyze an elastic collision of two solid objects in one-dimensional motion. Describe how vibration of physical objects sin uptraves in gases, liquids and solid materials. Explain how interference, resonance, refraction and reflection affect sound waves. Describe the Doppler effect changes that occur in an observed sound as a result of the motion of a source of the sound relative core.
 longitudinal waves in gases, liquids and solid materials. 11. Explain how interference, resonance, refraction and reflection affect sound waves. 12. Describe the Doppler effect changes that occur in an observed sound as a result of the motion of a source of the sound
 11. Explain how interference, resonance, refraction and reflection affect sound waves. 12. Describe the Doppler effect changes that occur in an observed sound as a result of the motion of a source of the sound

Grade level	Enduring Understandings (4)	Essential learning (8-16)
-------------	-----------------------------	---------------------------

Physics II:
 Physics II: Explain why currents flow when free charges are placed in an electric field, and how that forms the basis for electric circuits. Explain and calculate the relationship of current, voltage, resistance and power in series and parallel circuits. For example: Determine the voltage between two points in a series circuit with two resistors. Describe how moving electric charges produce magnetic forces and moving magnets produce electric forces. Use the interplay of electric and magnetic forces to explain how motors, generators, and transformers work. Describe the nature of the magnetic and electric fields in a propagating electromagnetic wave. Explain and calculate how the speed of light and its wavelength change when the medium changes. Explain the refraction and/or total internal reflection of light in transparent media, such as lenses and optical fibers. Use properties of light, including reflection, refraction, interference, Doppler effect and the photoelectric effect, to explain phenomena and describe applications. Compare the wave model and particle model in explaining properties of light.
11. Describe and calculate the quantity of heat transferred between solids and/or liquids, using specific heat, mass and change in temperature.
12. Explain the role of gravity, pressure and density in the convection of heat by a fluid.
13. Compare the rate at which objects at different temperatures will transfer thermal energy by electromagnetic radiation.

	Grade level	Enduring Understandings (4)	Essential learning (8-16)
--	-------------	-----------------------------	---------------------------

10-12 Earth and Space Science:
1. Compare and contrast the interaction of
tectonic plates at convergent and
divergent boundaries. For example:
Compare the kinds of magma that
emerge at plate boundaries.
2. Use modern earthquake data to explain
how seismic activity is evidence for the
process of subduction. For example:
Correlate data on distribution, depth
and magnitude of earthquakes with
subduction zones.
3. Describe how the pattern of magnetic
reversals and rock ages on both sides of
a mid-ocean ridge provides evidence of sea-floor spreading.
4. Explain how the rock record provides
evidence for plate movement. For
example: Similarities found in fossils,
certain types of rocks, or patterns of
rock layers in various locations.
5. Describe how experimental and
observational evidence led to the theory
of plate tectonics.
6. Use relative dating techniques to explain
how the structures of the Earth and life
on Earth have changed over short and
long periods of time.
7. Cite evidence from the rock record for
changes in the composition of the global
atmosphere as life evolved on Earth. For
example: Banded iron formations as
found in Minnesota's Iron Range.
8. Compare and contrast the energy
sources of the Earth, including the sun,
the decay of radioactive isotopes and
gravitational energy.
9. Explain how the outward transfer of
Earth's internal heat drives the
convection circulation in the mantle to
move tectonic plates.
10. Explain how Earth's rotation, ocean
currents, configuration of mountain
ranges, and composition of the
atmosphere influence the absorption
and distribution of energy, which
contributes to global climatic patterns.
11. Explain how evidence from the geologic record, including ice core samples,
indicates that climate changes have
indicates that climate clidilges lidve

Grade level	Enduring Understandings (4)	Essential learning (8-16)
-------------	-----------------------------	---------------------------

occurred at varying rates over geologic
time and continue to occur today.
12. Trace the cyclical movement of carbon,
oxygen and nitrogen through the
lithosphere, hydrosphere, atmosphere
and biosphere. For example: The
burning of fossil fuels contributes to the
greenhouse effect.
13. Describe how the solar system formed
from a nebular cloud of dust and gas 4.6
billion years ago.
14. Explain how the Earth evolved into its
present habitable form through
interactions among the solid earth, the
oceans, the atmosphere and organisms.
15. Compare and contrast the
environmental conditions that make life
possible on Earth with conditions found
on the other planets and moons of our
solar system.
16. Explain how evidence, including the
Doppler shift of light from distant stars
and cosmic background radiation, is
used to understand the composition,
early history and expansion of the
universe.
17. Explain how gravitational clumping leads
to nuclear fusion, producing energy and
the chemical elements of a star.
18. Analyze the benefits, costs, risks and
tradeoffs associated with natural
hazards, including the selection of land
use and engineering mitigation. For
example: Determining land use in
floodplains and areas prone to
landslides.
19. Explain how human activity and natural
processes are altering the hydrosphere,
biosphere, lithosphere and atmosphere,
including pollution, topography and
climate. For example: Active volcanoes
and the burning of fossil fuels contribute
to the greenhouse effect.

Mission and Vision: Students graduating from Waseca Public Schools will be scientifically literate. If they so choose, they will be able to pursue any science career that captures their fancy.