
1

Directions for Lazarus Game
Directions from the Game Maker’s Apprentice book by Jacob Habgood and Mark Overmars

Game Description
Lazarus has been abducted by the Blob Mob, who are intent on bringing this harmless

creature to a sticky end. They’ve imprisoned him at the Blobfather’s factory, where they are
trying to squish him under a pile of heavy boxes. However, they’ve not accounted for
Lazarus’s quick thinking as the boxes can be used to build a stairway up to the power button to
stop the machinery. Do you have the reactions needed to help Lazarus build his way up or will
the mob claim another victim?

Each level traps Lazarus in a pit of boxes stacked on either side of the screen to keep
him within the level. The arrow keys will move him left or right, and he will automatically jump
onto boxes that are in his way. However, he can only jump the height of a single box, and
stack two or more boxes high and his path is blocked. New boxes will periodically appear
directly above Lazarus’s current position and fall vertically down from the top of the screen until
they come to rest. This mean that the player will be able to use Lazarus’s position to control
when boxes fall and build a stairway up to the power button.

There will be four different types of boxes, increasing in weight and strength: cardboard,
wood, metal and stone. Falling boxes will come to rest on boxes that are stronger than them,
but will crush boxes that are lighter. The type of each box is chosen at random, but the next
box to drop will be shown in the bottom left corner of the window just before it is released.
There will be a number of increasingly difficult levels, with higher stairways to build, and boxes
that fall faster. When Lazarus gets squished, the level will restart to give the player another
try.

We will be working with an animated character, Lazarus, who jumps, moves and gets
squished. We need to account for these different variations by having multiple sprites of
Lazarus and corresponding objects. We also need to make sure that all of the animations fit
within the confines of the room. The boxes are 40x40 and when boxes are stacked, it
becomes 80x80. We will need to make sure that the origins are at the same position,
regardless of which version of Lazarus we are working with. Follow the step directions very
closely and it will make more sense.
Creating the Lazarus sprite resources for the game:

1. Create a new sprite called sprite_laz_stand using Lazarus_stand.png. This sprite is
40x40. Origins for sprite defaults to the top-left corner (with X and Y set to 0). Leave
these settings alone and click OK to close the form.

2. Create another sprite called sprite_laz_right using Lazarus_right_strip7.png. This sprite
is 80x80 so we need to modify the settings. Change the Y value to 40 and click OK.

3. Create a Sprite_laz_jump_right using Lazarus_jump_right_strip7.png. X =0 and Y=40.
4. Create a sprite_laz_left using Lazarus_left_strip7.png. Set X and Y to 40 and close.
5. Create a sprite_laz_jump_left using Lazarus_jump_left_strip7.png. X=40 and Y=40
6. Create 2 more sprites: sprite_laz_afraid and sprite_laz_squished using

Lazarus_afraid_strip10.png and Lazarus_squished_strip11.png. These do not require
the X and Y settings to change.

2

First we will deal with the normal or standing Lazarus. We need to create objects for each of
these sprites after getting the standing Lazarus set up.
Creating Lazarus object resources for the game:

1. Create a new object called object_laz_stand using the standing sprite.
2. Press Ok to close the form.
3. Create a new object called object_laz_right using the Lazarus_right sprite.
4. Add an Other, Animation end event.
5. Include a Jump to Position action (move tab). Set X to 40 and Y to 0 and Relative is

enable.
6. Include a Change Instance action (main1) and choose object_laz_stand.
7. Click OK to close the form.
8. Create another object called object_laz_left and use the Lazarus_left sprite. Repeat

step 4 and 5 with the X being set to -40 in the Jump to Position action. Then follow
steps 6-7.

9. Create an object for object_laz_jump_right and use the sprite Lazarus_jump_right.
Repeat the same process as above but the X=40 and Y=-40 in Jump to Position
action.

10.Add a final object called object_laz_jump_left and use sprite Lazarus_jump_left.
Repeat the steps with X=-40 and Y=-40 in Jump to Position action.

Creating the squished Lazarus object resource:
1. Create an object called object_laz_squished using Lazarus_squished sprite.
2. Add an Other, Animation End event and include Display Message action (main2).
3. Type “You’re history!!#Better luck next time” into the message properties. The # starts

a new line.
4. Finally include a Restart Room (main1) after message action and click OK to close the

properties.

Now we go back to working with the standing Lazarus object.
Adding a right key event for standing Lazarus:

1. Reopen the properties for object_laz_stand.
2. Add a Key Press, <right> event and include Check Collision action (control).
3. This will check that there would be a collision if we moved Laz to a particular position.

We have to make sure that Lazarus is on solid ground before letting him move. Set X to
0 and y=8 and enable Relative.

4. Create a Start Block.
5. Include a Check Empty conditional action. This action checks that there wouldn’t be a

collision if we move to a particular position. Set X=40 and Y=0 and enable Relative.
6. Include a Change Instance action (main1) and choose object_laz_right. Select YES to

Perform Events. Perform events control whether the Destroy and create event will be
called.

7. Include an Else action from Control tab.
8. Include another Check Empty action after this. We are checking that no boxes are

diagonally, up and to the right of Lazarus. Set X=40 and Y=-40 and Relative is
enabled.

9. Include a Change Instance action and choose object_laz_jump_right. Select Yes to
Perform events.

3

10. Include an End Block action. This will conclude that all actions should be performed if
Lazarus is on solid ground.

Adding a left key press to the standing Lazarus object:
1. Add a Key Press <left> event and include a Check Collision. Set X=0 and Y=8 and

enable Relative.
2. Include a Start Block.
3. Include a Check Empty action (control) with X=-40, Y=0 and Relative enabled.
4. Include a Change Instance action (main1) and choose object_laz-left. Choose Yes to

Perform Events.
5. Now include Else from the control tab.
6. Include a Check Empty with X=-40, Y=-40 and Relative enabled.
7. Include a Change Instance action and select object_laz_jump_left. Choose Yes to

Perform Events.
8. Include an End Block.

Adding a step event to the standing Lazarus object to make it fall:
1. Add the Step, Step to standing Lazarus object.
2. Include a Check Empty action setting X=0 and Y=8. Enable Relative.
3. Include a Jump to Position action. Set X=0 and Y=8 with Relative enabled.

Creating a wall object resource for the game:
1. Create a new sprite called sprite_wall using wall.png.
2. Create a new object called object_wall. Enable Solid.
3. Create a new room call room_test and create a caption on the settings tab.
9. Set the Snap X and Snap Y to 40. This makes all of the boxes 40x40.
4. Switch to the objects tab and select the wall object. Create a level with a number of

boxes to create flat areas and staircases. You can use the Shift key to add multiple
instances. Add one instance of the standing Lazarus object.

5. Test the game. If something doesn’t work, go back through the steps, making sure
Relative is enabled where required. SAVE YOUR WORK!!

Now we will move to working with the falling boxes. They will be chosen at random and the
heavier boxes will crush the lighter ones. To give the player a way to think ahead, the next box
to drop will be shown in the corner of the screen as the current box is falling.
Each box will have 3 behaviors: 1- appearing in the corner as the next box, falling and landing
on another box and creating an obstacle for Lazarus to get around. We will need to create 3
different objects for each box—one for each behavior. We start with the stationary boxes and
creating more sprites.
Creating new box sprite and object resources for the game:

1. Create sprites called sprite_box_stone, sprite_box_metal, sprite_box_wood, and
sprite_box_cardboard using Stonebox.png, Metalbox.png, Woodbox.png and
Cardbox.png.

2. Create a new object called object_box_stone using the stone sprite. Set as Solid.
3. Repeat the steps for the other boxes, naming them object_box_metal, object_box_wood

and object_box_cardboard.

4

Creating falling box objects for the game:
1. Create a new object called object_falling _stone using the stone box sprite. Select

Solid.
2. Add a Create event and include a Jump to Position action. Type the variable

object_laz_stand.x into X and Y=-40. This makes the box start to fall above Lazarus.
3. Include a Move Fixed action with a downward direction and Speed of 5.
4. Add a Collision event with object_laz_stand and include a Change Instance action.

Change Applies to option to Other. Select object_laz_squished and select Yes to
Perform Events.

5. Add another Collision event, this time with object_wall. This will stop the box and
include a Move Fixed action with the middle square pressed and a Speed of 0.
Include a Change Instance action and select object_box_stone.

6. Add a third Collision event with object_box_stone and include the same two action as
the Collision event with the wall (these can be copied).

7. Add a fourth Collision event with the object_box_metal. Metal is lighter than stone so it
must be crushed. Include a Destroy Instance action and select Other object.

8. Add fifth and sixth Collision events with object_box_wood and object_box_cardboard,
including Destroy Instance actions like in step 7 to destroy the Other box in the
collision.

9. Create the remaining three falling objects for the other types (object_falling_metal,
object_falling_wood, and object_falling_cardboard). Repeat steps 1-8 for each one
using step 7 when a box crushes another box and step 5 when a box stops.

Material Material(s) That It Crushes
Stone Metal, Wood and Cardboard
Metal Wood and Cardboard
Wood Cardboard
Cardboard None

Creating next box object resources for the game:
1. Create a new object called object_next_stone, assign the stone box sprite and make it

Solid. Click OK.
2. Create objects for object_next_metal, object_next_wood and object_next_cardboard.

Now we have to create a controller. A controller object is an invisible object without a sprite
which performs important actions on other objects. Our controller will use a Step event to
check if there is a falling box. If not, then it will turn the current box in to a falling box and
create a new next box It will run until the level is completed or the player gets squished.

Creating a controller object resource for the game:
1. Create a new object called object_controller and leave it without a sprite.
2. Add a Step, Step event and include the Test Instance Count conditional action

(control). This counts the number of instances of a particular object and tests it against
a value. Choose object_falling_stone; leave the Number as 0 and Operation as Equal
to.

3. Include three more Test Instance Count conditional actions to check if there are no
instances of object_falling_metal, object_falling_wood, and object_falling_cardboard.

5

4. Include a final Test Instance Count action for the object_laz_stand but set the Number
to 1 and Operation to Equal to. This checks to see if there is a standing Lazarus in this
level.

5. Include a Start Block action. This will group the actions to create the new box.
6. Include a Change Instance action and select Object for applies to, so it changes all

instance of one object on the level into another. Set Object to object_next_stone,
Change into object_falling_stone, and select Yes to Perform Events. This turns any
stone next boxes into stone falling boxes.

7. Add 3 more Change Instance actions to change object_next_metal into
object_falling_metal objects, object_next_wood into object_falling_wood, and
object_next_cardboard into object_falling_cardboard.

8. Include a Create Random action (main1) and select four different next box objects.
Set X=0 and Y=440 leave Relative disabled. If Relative is disabled, X and Y are
measured from the top-left corner of the screen. With these coordinates, you are
putting the new next box where it should be in the bottom left corner of the screen.

9. Include an End Block action to close the block of actions that are dependent on all
conditions being true.

Editing the test room to add new instances:
1. Reopen the test room.
2. Remove all extra wall instances so it is just a pit with walls on both sides and across

the bottom.
3. Add one instance of the controller object into the room. It will show up as a blue ball

with a red question mark. This won’t appear in the game but lets us know it is there
when we are editing the room.

Now run the game and test it. Make sure that the box appears in the bottom left is the box that
falls down the screen next and check that heavier boxes are crushing lighter ones.

Finishing touches-creating an exit to the next level. As we left off, there was no way out of the
room. We need to create a way for Lazarus to avoid being trapped.

Editing the standing Lazarus object to detect for being trapped:
1. Reopen the standing Lazarus object and select the Step event.
2. Include the Check Collision conditional action (control) below the last action in the list.

Set X=40 and Y=0 and enable Relative.
3. Include another Check Collision with X=40 and Y=-40 and Relative enabled.
4. Include 2 more Check Collision actions: 1 with X=-40 and Y=0 and the other with X=

-40 and Y=-40. Relative should be enabled on both.
5. Include a Change Sprite action using afraid Lazarus sprite. This will only happen if the

4 conditions above are true and Lazarus is boxed in.
Editing the standing Lazarus object to detect for being freed:

1. Select the Step event for the standing Lazarus.
2. Include a Change Sprite at the very beginning of the list of actions. Set it to change

into standing Lazarus sprite.

Adding a goal. All good games must have a goal so players don’t get bored. The goal here is
to reach one of the stop buttons so the machinery stops and the boxes stop dropping. If the

6

player reaches the end and there are no more rooms, the completion message must be seen
and the ability to restart the game made available.

Creating a new button object resource for the game:
1. Create a new sprite called sprite_button using Button.png.
2. Create a new object called object_button using the button sprite. Set Depth to 10 so it

appears behind other objects.
3. Add a Collision event with the standing Lazarus and include a Sleep action (main 2).

Set Milliseconds to 1000 and Redraw is true.
4. Include a conditional Check Next action (main1).
5. Include a Next Room action (main1).
6. Include an Else action followed by the Start Block action
7. Include a display Message action (main2) and set Message to “Congratulations!#You

have completed the game!”
8. Include a Different Room action and set New Room to first room
9. Finally, include an End Block actions and close properties form.
10.Edit your test room and add a stop button on either side about 5 boxes up.

Add 2 more levels by right clicking the test room and duplicate. Move the stop buttons up in
each room to make it harder to reach. Also add some walls that Laz must get over to reach
the buttons.

Starting a level
Creating a new starter object resource for the game:

1. Create a new sprite called sprite_title using Title.png.
2. Create a new object called object_started using the title sprite.
3. Add a Create event and include a Sleep action. Set Milliseconds to 2000 to wait 2

seconds.
4. Include the Change Instance action and select the controller object. Close the

properties.
5. Edit your test room, remove the controller object using the right mouse button. Add

the starter object at an appropriate place.

Sounds, Backgrounds and Help
1. Add sounds for Music.mp3, Wall.wav, Crush.wav, Squished.wav, Move.wav and

Button.wav. and play them at the right times using the Play Sound action (main1).
2. Create an Other, Game Start event. Choose Music and set Loop to true in the Play

Sound action.
3. Add an Other, Game Start event to the Controller as well. Choose Play Sound, Music

and Loop is set as True.
4. Add crush and wall sounds to the existing Collision events between the falling box

objects and stationary box objects.
5. Add a new Create event for the squished lazarus object and play the squished sound

effect. This will save you work to put it in each of the four collision events for falling
boxes and Lazarus.

6. Add Create events to play the move sound for the four moving Lazarus objects.
7. Play the button sound in the Collision between the button and Lazarus.

7

Test the game and make sure the sound effects are working and playing when needed. If you
don’t hear a sound when moving around, check that you set Perform Events to Yes in the
Change Instance actions to change into the animating objects.

Creating a background resource and Game information:
Create a background using background.png from the folder.

1. Reopen the properties form for the room and select the backgrounds tab. Choose the
new background from the menu.

2. Double click the Game Information and add a help text for the game. Remember to
include the name of the game, who created it and a description of the aims and
controls.

Levels
We will talk more about this later but you should have some pits and buttons on each side to
keep things fairly easy. As the levels progress, make the pits higher and that will make the
levels harder. By increasing the speed, the challenge will increase. Duplicating the rooms wil
save a lot of work. Remember you can right click and choose Duplicate. One other thing to
make it helpful is to add some cheats to allow you to skip levels.
Editing the controller object to add cheats:

1. Open the properties form for the controller object.
2. Add a Key Press <N> event and include the Next Room action.
3. Add a Key Press <P> event and include the Previous Room action.

Good luck and remember—these cheats will be removed before the game is finally finished.
You might want to add an opening and closing screen or a scoring system so players can
compete for high scores.

