G) Find the derivative of
$$f(x) = \sin x$$
 at $x = \frac{\pi}{6}$ $\left(\frac{\pi}{6}, \sin \frac{\pi}{6}\right) \rightarrow \left(\frac{\pi}{6}, \frac{1}{2}\right)$

$$f'(x) = \cos x$$

$$f'(\frac{\pi}{6}) = \cos \left(\frac{\pi}{6}\right) = \frac{3}{2}$$

$$f'(x) = \frac{1}{2}$$
H) Find the derivative of $f(x) = \arcsin x$ at $x = \frac{1}{2}$

$$\left(\frac{1}{2}, \frac{\pi}{2}\right)$$

$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\left(\frac{1}{2}, \frac{\pi}{2}\right)$$
1. Let f be a differentiable function such that $f(3) = 15$ $f(6) = 3$ $f'(3) = -8$ and $f'(6) = -2$.

The function g is differentiable and $g(x) = f^1(x)$ for all x . What is the value of $g'(15)$?

(15.3)

 $f'(3) = 15$ $f'(3)$

Let f be a differentiable function such that

Let f be a differentiable function such f(3) = 5, f(8) = 4) f'(3) = 6 and f'(8) = 3.

The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(4)? $g(x) = f^{-1}(x)$ for all x. What is the value of g'(4)?

- $m = \frac{1}{3}$ a) -1/2 b) -1/8 c) 1/6 d) 1/3
 - e) The value of g'(4) cannot be determined

3. Let f be a differentiable function such that
$$f(3) = 5$$
 $f(8) = 4$, $f'(3) = 6$ and $f'(8) = 3$.

The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(5)?

- a) -1/2 b) -1/8 c) 1/6
- d) 1/3
- The value of g'(5) cannot be determined

4. If
$$f(2) = -3$$
, $f'(2) = \frac{4}{3}$, and $g(x) = f^{-1}(x)$,

what is the equation of the tangent line to g(x) at x = -3? A) $y-2 = \frac{-3}{4}(x+3)$ B) $y+2 = \frac{-3}{4}(x-3)$ C) $y-2 = \frac{3}{4}(x+3)$ D) $y+3 = \frac{3}{4}(x-2)$ E) $y-2 = \frac{4}{3}(x+3)$

A)
$$y-2 = \frac{-3}{4}(x+3)$$

A)
$$y-2 = \frac{1}{4}(x+3)$$

C)
$$y-2=\frac{3}{4}(x+3)$$

E)
$$y-2 = \frac{4}{3}(x+3)$$

B)
$$y+2=\frac{-3}{4}(x-3)$$

D)
$$y+3=\frac{3}{4}(x-2)$$

$$(2,-3)$$
 $m=-\frac{4}{3}$

5. If
$$f(2) = -3$$
, $f'(2) = \frac{-4}{3}$, and $g(x) = f^{-1}(x)$, what is the equation of the tangent line to $g(x)$ at $x = -3$?

(A) $y-2 = \frac{-3}{4}(x+3)$

B) $y+2 = \frac{-3}{4}(x-3)$
 $y=2-\frac{3}{4}(x+3)$

C) $y-2 = \frac{3}{4}(x+3)$

D) $y+2 = \frac{4}{3}(x-3)$

E) $y-2 = \frac{4}{3}(x+3)$

5. If
$$f(2) = -3$$
, $f'(2) = \frac{-4}{3}$, and $g(x) = f^{-1}(x)$,

at
$$x = -3$$
?

A)
$$y-2 = \frac{-3}{4}(x+3)$$

B)
$$y+2=\frac{-3}{4}(x-3)$$

C)
$$y-2 = \frac{3}{4}(x+3)$$

D)
$$y+2=\frac{4}{3}(x-3)$$

E)
$$y-2 = \frac{4}{3}(x+3)$$

6. If
$$f(2) = -3$$
, $f'(2) = \frac{-3}{4}$, and $g(x) = f^{-1}(x)$,

what is the equation of the tangent line to g(x)

at
$$x = -3$$
?

$$y-2 = \frac{-3}{4}(x+3)$$

B)
$$y+3=\frac{-4}{3}(x+2)$$

$$\sqrt[3]{y-2} = \frac{3}{4}(x+3)$$

at
$$x = -3$$
?
B) $y+3 = \frac{-4}{3}(x+2)$
 $y+2 = \frac{3}{4}(x+3)$
E) $y-2 = \frac{4}{3}(x+3)$
E) $y-2 = \frac{4}{3}(x+3)$

(E)
$$y-2 = \frac{-4}{3}(x+3)$$