Partial Pressures

Dalton's Law of Partial Pressures & Air Pressure

$$P_{Total} = P_{O_2} + P_{N_2} + P_{CO_2} + P_{Ar}$$
 $P_{Total} = 149 + 590 + 3 + 8 mm Hg$
 $P_{Total} = 750 mm Hg$

Dalton's Partial Pressures

Dalton's Law Applied

Suppose you are given four containers – three filled with noble gases. The first 1 L container is filled with argon and exerts a pressure of 2 atm. The second 3 liter container is filled with krypton and has a pressure of 380 mm Hg. The third 0.5 L container is filled with xenon and has a pressure of 607.8 kPa. If all these gases were transferred into an empty 2 L container...what would be the pressure in the "new" container?

...just add them up

Dalton's Law of Partial Pressures

"Total Pressure = Sum of the Partial Pressures" $P_T = P_{Ar} + P_{Kr} + P_{Xe} + \dots$

$$P_1 \times V_1 = P_2 \times V_2$$
 $P_1 \times V_1 = P_2 \times V_2$ (0.5 atm) (3L) = (X atm) (2L) (6 atm) (0.5 L) = (X atm) (2L) $P_{Kr} = 0.75$ atm $P_{xe} = 1.5$ atm

 $P_{T} = 1 \text{ atm} + 0.75 \text{ atm} + 1.5 \text{ atm}$

 $P_{T} = 3.25 \text{ atm}$

Dalton's Law of Partial Pressures

In a gaseous mixture, a gas's **partial pressure** is the one the gas would exert if it were by itself in the container.

The mole ratio in a mixture of gases determines each gas's partial pressure.

Total pressure of mixture (3.0 mol He and 4.0 mol Ne) is 97.4 kPa.

Find partial pressure of each gas

$$P_{He} = \frac{3 \text{ mol He}}{7 \text{ mol gas}} (97.4 \text{ kPa}) = 41.7 \text{ kPa}$$

$$P_{Ne} = \frac{4 \text{ mol Ne}}{7 \text{ mol gas}} (97.4 \text{ kPa}) = 55.7 \text{ kPa}$$

the total pressure exerted by a mixture of gases is the sum of all the partial pressures

$$P_Z = P_{A,Z} + P_{B,Z} + \dots$$

80.0 g each of He, Ne, and Ar are in a container. The total pressure is 780 mm Hg. Find each gas's partial pressure.

80 g He
$$\left(\frac{1 \text{mol}}{4 \text{ g}}\right)$$
 = 20 mol He
80 g Ne $\left(\frac{1 \text{mol}}{20 \text{ g}}\right)$ = 4 mol Ne
80 g Ar $\left(\frac{1 \text{mol}}{40 \text{ g}}\right)$ = 2 mol Ar
Total: P_{Ne} = $\frac{4}{26}$ of total
P_{Ar} = $\frac{2}{26}$ of total

$$P_{He} = 600 \text{ mm Hg}, P_{Ne} = 120 \text{ mm Hg}, P_{Ar} = 60 \text{ mm Hg}$$

Dalton's Law: $P_Z = P_{A,Z} + P_{B,Z} + ...$

Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container B. Find total pres. of mixture in B.

	Px	V _X	Vz	P _{X,Z}
Α	2.0 atm	1.0 L		2.0 atm
В	4.0 atm	1.0 L	1.0 L	4.0 atm

Total = 6.0 atm

Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container Z ("/vol. 2.0 L). Find total pres. of mixture in Z.

	Px	V _X	Vz	P _{X,Z}
Α	2.0 atm	1.0 L	0.01	1.0 atm
В	4.0 atm	1.0 L	2.0 L	2.0 atm

Total =
$$3.0$$
 atm

$$P_AV_A = P_ZV_Z$$

2.0 atm (1.0 L) = X atm (2.0 L)
 $X = 1.0$ atm
 $P_BV_B = P_ZV_Z$
4.0 atm (1.0 L) = X atm (2.0 L)

Find total pressure of mixture in Container Z.

	P _X	V _X	Vz	P _{X,Z}
Α	3.2 atm	1.3 L		1.8 atm
В	1.4 atm	2.6 L	2.3 L	1.6 atm
С	2.7 atm	3.8 L		4.5 atm

$$P_AV_A = P_ZV_Z$$

3.2 atm (1.3 L) = X atm (2.3 L)
 $X = 1.8$ atm
 $P_BV_B = P_ZV_Z$
1.4 atm (2.6 L) = X atm (2.3 L)
 $P_CV_C = P_ZV_Z$
2.7 atm (3.8 L) = X atm (2.3 L)

Total = 7.9 atm

The total pressure of a mixture of gases equals the sum of the partial pressures of the individual gases.

$$P_{total} = P_1 + P_2 + \dots$$

When a H₂ gas is collected by water displacement, the gas in the collection bottle is actually a mixture of H₂ and water vapor.

Hydrogen gas is collected over water at 22.5°C. Find the pressure of the dry gas if the atmospheric pressure is 94.4 kPa

The total pressure in the collection bottle is equal to atmospheric pressure and is a mixture of H₂ and water vapor.

GIVEN:

$P_{H_2} = ?$

$$P_{total} = 94.4 \text{ kPa}$$

$$P_{H_{2}O} = 2.72 \text{ kPa}$$

Look up water-vapor pressure on p.899 for 22.5°C.

WORK:

$$P_{total} = P_{H2} + P_{H2O}$$

$$94.4 \text{ kPa} = P_{H2} + 2.72 \text{ kPa}$$

$$P_{H_2} = 91.7 \text{ kPa}$$

Sig Figs: Round to least number of decimal places.

A gas is collected over water at a temp of 35.0°C when the barometric pressure is 742.0 torr. What is the

The total pressure in the collection bottle is equal to barometric pressure and is a mixture of the "gas" and water vapor.

GIVEN:

$P_{gas} = ?$

$$P_{total} = 742.0 \text{ torr}$$

$$P_{H2O} = 42.2 \text{ torr}$$

Look up water-vapor pressure on p.899 for 35.0°C.

WORK:

$$P_{total} = P_{gas} + P_{H2O}$$

$$742.0 \text{ torr} = P_{H_2} + 42.2 \text{ torr}$$

$$P_{gas} = 699.8 \text{ torr}$$

Sig Figs: Round to least number of decimal places.

Dalton's Law of Partial Pressures

1. Container A (with volume 1.23 dm³) contains a gas under 3.24 atm of pressure. Container B (with volume 0.93 dm³) contains a gas under 2.82 atm of pressure. Container C (with volume 1.42 dm³) contains a gas under 1.21 atm of pressure. If all of these gases are put into Container D (with volume 1.51 dm³), what is the pressure in Container D?

	P _x	V_x	P_D	V_D
Α	3.24 atm	1.23 dm ³	2.64 atm	
В	2.82 atm	$0.93~\mathrm{dm^3}$	1.74 atm	1.51 dm ³
С	1.21 atm	1.42 dm ³	1.14 atm	
TOTAL			P _T = P _A + P _B + P _C 5.52 atm	

$$(P_{A})(V_{A}) = (P_{D})(V_{D}) \qquad (P_{B})(V_{B}) = (P_{D})(V_{D}) \qquad (P_{C})(V_{A}) = (P_{D})(V_{D})$$

$$(3.24 \text{ atm})(1.23 \text{ dm}^{3}) = (x \text{ atm})(1.51 \text{ dm}^{3}) \qquad (2.82 \text{ atm})(0.93 \text{ dm}^{3}) = (x \text{ atm})(1.51 \text{ dm}^{3}) \qquad (P_{C}) = 1.14 \text{ atm}$$

$$(P_{C}) = 1.14 \text{ atm}$$

Dalton's Law of Partial Pressures

3. Container A (with volume 150 mL) contains a gas under an unknown pressure. Container B (with volume 250 mL) contains a gas under 628 mm Hg of pressure. Container C (with volume 350 mL) contains a gas under 437 mm Hg of pressure. If all of these gases are put into Container D (with volume 300 mL), giving it 1439 mm Hg of pressure, find the original pressure of the gas in Container A.

	P_x	V_x P_D		V_D
Α	P _A	150 mL	406 mm Hg	
В	628 mm Hg	250 mL	523 mm Hg	300 mL
С	437 mm Hg	350 mL	510 mm Hg	
TOTAL			P _T = P _A + P _B + P _C 1439 mm Hg	
l				

Table of Partial Pressures of Water

Vapor Pressure of Water						
Temperature (°C)	Pressure (kPa)	Temperature (°C)	Pressure (kPa)	Temperature (°C)	e Pressure (kPa)	
0	0.6	21	2.5	30	4.2	
5	0.9	22	2.6	35	5.6	
8	1.1	23	2.8	40	7.4	
10	1.2	24	3.0	50	12.3	
12	1.4	25	3.2	60	19.9	
14	1.6	26	3.4	70	31.2	
16	1.8	27	3.6	80	47.3	
18	2.1	28	3.8	90	70.1	
20	2.3	29	4.0	100	101.3	

X Mole Fraction

The ratio of the number of moles of a given component in a mixture to the total number of moles in the mixture.

$$\chi_2 = \frac{n_2}{n_{total}} = \frac{P_2}{P_{total}}$$

The partial pressure of oxygen was observed to be 156 torr in air with total atmospheric pressure of 743 torr. Calculate the mole fraction of O₂ present.

$$\chi_{O_2} = \frac{P_{O_2}}{P_{total}} = \frac{156 torr}{743 torr} = 0.210$$

$$\chi_2 = \frac{n_2}{n_{total}} = \frac{P_2}{P_{total}}$$

The mole fraction of nitrogen in the air is 0.7808. Calculate the partial pressure of N₂ in air when the atmospheric pressure is 760. torr.

$$\chi_{N_2} \times P_{total} = P_{N_2}$$

 0.7808×760 . torr = 593 torr

The production of oxygen by thermal decomposition

