Study Guide and Intervention 8-6

Common Logarithms

Common Logarithms Base 10 logarithms are called common logarithms. The expression $\log_{10} x$ is usually written without the subscript as $\log x$. Use the LOG key on your calculator to evaluate common logarithms.

The relation between exponents and logarithms gives the following identity.

Inverse Property of Logarithms and Exponents $10^{\log x} = x$

Example 1 Evaluate log 50 to the nearest ten-thousandth.

Use the $\lfloor LOG \rfloor$ key on your calculator. To four decimal places, $\log 50 = 1.6990$.

Example 2 Solve $3^{2x+1} = 12$.

$3^{2x+1} = 12$	Original equation
$\log 3^{2x + 1} = \log 12$	Property of Equality for Logarithmic Functions
$(2x + 1) \log 3 = \log 12$	Power Property of Logarithms
$2x + 1 = \frac{\log 12}{\log 3}$	Divide each side by log 3.
$2x = \frac{\log 12}{\log 3} - 1$	Subtract 1 from each side.
$x = \frac{1}{2} \left(\frac{\log 12}{\log 3} - 1 \right)$	Multiply each side by $\frac{1}{2}$.
$x = \frac{1}{2} \left(\frac{1.0792}{0.4771} - 1 \right)$	Use a calculator.
$x \approx 0.6309$	

Exercises

Use a calculator to evaluate each expression to the nearest ten-thousandth.

1. log 18	2. log 39	3. log 120
4. log 5.8	5. log 42.3	6. log 0.003

Solve each equation or inequality. Round to the nearest ten-thousandth.

7. $4^{3x} = 12$	8. $6^{x+2} = 18$
9. $5^{4x-2} = 120$	10. $7^{3x-1} \ge 21$
11. $2.4^{x+4} = 30$	12. $6.5^{2x} \ge 200$
13. $3.6^{4x-1} = 85.4$	14. $2^{x+5} = 3^{x-2}$
$15.9^{3x} = 4^{5x + 2}$	16. $6^{x-5} = 2^{7x+3}$

8-6 Skills Practice

Common Logarithms

Use a calculator to evaluate each expression to the nearest ten-thousandth.

1. log 6	2. log 15

3. log 1.1 **4.** log 0.3

Solve each equation or inequality. Round to the nearest ten-thousandth.

5. $3^x > 243$	6. $16^{v} \leq \frac{1}{4}$
7. $8^p = 50$	8. $7^{y} = 15$
9. $5^{3b} = 106$	10. $4^{5k} = 37$
11. $12^{7p} = 120$	12. $9^{2m} = 27$
13. $3^{r-5} = 4.1$	14. $8^{y+4} > 15$
15. $7.6^{d+3} = 57.2$	16. $0.5^{t-8} = 16.3$

Express each logarithm in terms of common logarithms. Then approximate its value to the nearest ten-thousandth.

18. $5^{x^2 + 1} = 10$

19. $\log_{3} 7$	$20. \log_{5} 66$
21. log ₂ 35	22. $\log_{6} 10$

- **23.** Use the formula $pH = -\log[H+]$ to find the pH of each substance given its concentration of hydrogen ions.
 - **a.** gastric juices: $[H+] = 1.0 \times 10^{-1}$ mole per liter
 - **b.** tomato juice: $[H+] = 7.94 \times 10^{-5}$ mole per liter
 - **c.** blood: $[H+] = 3.98 \times 10^{-8}$ mole per liter
 - **d.** toothpaste: $[H+] = 1.26 \times 10^{-10}$ mole per liter

17. $42^{x^2} = 84$