

Instructor Information

Name: Mr. Rik Fujioka

Room: A-179

Website: https://www.murrieta.k12.ca.us/Page/29817

Email: rfujioka@murrieta.k12.ca.us

School Phone: (951) 677-0568 Ext. 6429 **Prerequisite:** Exploring Computer Science

Introduction

This course introduces students to the foundational concepts of computer science and explores the impact computing and technology have on our society. With a unique focus on creative problem solving and real-world applications, this course gives students the opportunity to explore several important topics of computing using their own ideas and creativity, use the power of computing to create artifacts of personal value, and develop an interest in computer science that will foster further endeavors in the field.

Course Overview

The course utilizes a blended classroom approach. The content is a mix of web-based and physical activities. Students will write and run code in the browser, create digital presentations, and engage in collaborative exercises with classmates. There is no textbook, but the instructor will utilize tools and resources provided by:

CodeHS.com / Code.org / Edhesive.com / Albert.io

Each unit of the course is broken down into lessons. Lessons consist of video tutorials, short quizzes, example programs to explore, written programming exercises, free response exercises, collaborative creation projects and research projects.

Computational Thinking Practices

Computational Solution Design

Determine design/method approach Explain how collaboration affects the process

Abstraction in Program Development

Generalize data through variables Manage complexity in a program

Computing Innovations

Explain impact of a computing innovation Evaluate based on legal/ethical factors

Algorithms and Program Development

Represent algorithmic process Implement algorithms in a program

Code Analysis

Explain how a code segment/program functions Use error discovery to correct algorithms

Responsible Computing

Collaborate in the development of solutions
Use safe/secure methods using computer devices

Conceptual Framework

Big Idea 1: Creative Development

Use a formal iterative design process
Use experimentation and multiple perspectives

Big Idea 3: Algorithms & Programming

Use a formal iterative design process
Use experimentation and multiple perspectives

Big Idea 5: Impact of Computing

Beneficial and harmful effects Legal/Ethic concerns, bias, and digital divide

Big Idea 2: Data

Interpret, transform, and present data Explain data values, compression, and data sets

Big Idea 4: Computing Systems and Networks

Interpret, transform, and present data Explain data values, compression, and data sets

Create Performance Task

Create and develop your program with video
Explain your abstraction, iteration, and procedure functions

Student Requirements

Internet access at home (recommended) → If a student does not finish assignments during class time, it is the student's responsibility to complete the work outside of class. (Home, Library, etc.)

Submitting Assignments → Students are required to submit work electronically and on time. If a student is absent, s/he will have one additional day per absence day to turn in work. Late work will <u>NOT</u> be accepted.

Be Punctual - Prepared - Productive

Grading Policy

Grades are cumulative throughout each grading period and will be based on formative and summative assessments to support students' educational and professional growth/progress.

A = 90% - 100%

B = 80% - 89%

C = 70% - 79%

D = 60% - 69%