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Recap

* Stream: elements from universe[ ]

={1,2,.. } exzg.
( 4 pv )=¢(58111435,..,10)

e =frequency of inthe stream =# of

occurrences of value , =( ..., )



Count-Min

* e [ ]ﬁ[ [ are 2-wise independent hash
functions

e Maintain + counters with values:

= # elements in the stream with ( ) =

 Forevery thevalue > andso:
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* If =—and =log,— then:
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More about Count-Min

Authors: Graham Cormode, S. Muthukrishnan [LATIN’04]
Count-Min is linear:
Count-Min(S1 + S2) = Count-Min(S1) + Count-Min(S2)

Deterministic version: CR-Precis

Count-Min vs. Bloom filters

— Allows to approximate values, not just 0/1 (set membership)
— Doesn’t require mutual independence (only 2-wise)

FAQ and Applications:

— https://sites.google.com/site/countminsketch/home/

— https://sites.google.com/site/countminsketch/home/faq



https://sites.google.com/site/countminsketch/home/
https://sites.google.com/site/countminsketch/home/faq

Fully Dynamic Streams

* Stream: updates ( , A ) S [ ] x R that define

vector where = Z A .

* Example: For =4

((1.3),(3,05),(12),(2,-2)(21),(1,- 1), (41))
=(4, -1,0.5, 1)

* Count Sketch: Count-Min with random signs
and median instead of min:



Count Sketch

+ Inadditionto :[ |-/ ] userandom signs

[ J-t-1.15

RPNe

e Estimate:

" (1[]1’10,...,(),[))
1 3
* Parameters: = (log—), =

p~li~ 0. 11 b1 <1



£ -Sampling

* Stream: updates ( , A ) S [ ] x R that define

vector where = Z A .

£ -Sampling: Returnrandom €/ Jand €R:
pﬂ:]:@i)ﬁh+ :
=(12 )




Application: Social Networks

Each of peoplein a social network is friends
with some arbitrary set of other -1 people

Each person knows only about their friends

With no communication in the network, each
person sends a postcard to Mark Z.

If Mark wants to know if the graph is
connected, how long should the postcards be?



Optimal  estimation

* Yesterday: ( , )-approximate

— " ( 171/ )space for =Z‘ ‘

— " (log )spacefor |,
* New algorithm: Let (', ) be an ¥ ,-sample.

A -2 A + .
Return = 2 , Where pisan estimate of 2

* Expectation:



Optimal  estimation

* New algorithm: Let [ , ] be an fZ-sampIe.

Return = AZ _Z, where AZisan % estimate of 2
 Variance:
2| — _ 2] —
[(1s [2=), [=11%=]
2
_ 12 2_22(—2): +2 c *2
Z 2 2 -2
e[l 2
2
* Exercise: Show that < 1-—- 2

2 2 -2



{,-Sampling: Basic Overview

1
* Assume 2( >:1.Weight by / = |—, where
v
:( y A )
:( e ]where :/
2>

* Forsome value , return ( , ) if there is a unique such that 2

e [01]:

* Probability [ p ] is returned if is large enough:



t,-Sampling: Part 1

Use Count-Sketch with parameters { , ) to sketch

To estimate 2.’
~2
2 — 2 ~2 —
= and =—
( h C ))
Lemma: With high probability if = (log )
2oz ey (2O

Corollary: With high probability if = (log )and

20 )

>>



Proof of Lemma

 Let = () +
2l )

* By the analysis of Count Sketch [ Z] < and by Markov:
} 3 - 2
Pr| < 2C ) >—
3
2
. If‘ ‘2—‘ then 2 = % ‘2
’ , h C)|
2
. If‘ ‘ S—‘ , then




t,-Sampling: Part 2

4

e let =1if" z >—and = 0 otherwise

* Ifthereisaunique with =1 then return (, ) 2).

A2
L, A1
* Note that if =2 —then < and so
A2
1

"2: 2 + + — = 2 + + —
4

2_ +4 ~2

therefore =



Proof of Lemma

4
e Let T = —. We can upper-bound PI‘[ ]
Pr[ =1] = >
r[ '4:| ZPr[ 4 2]
< Pr > | <
-4 2

Similarly, PI'[ :1] P

* Using independence of , probability of unique with = 1

VDJ —1V —n-‘>VDrF —11[1_vp1



Proof of Lemma

4
e Lett =— We can upper-bound Pr [ = 1] ;

Pr[ :14] :Pr[”z > ]

2 4 2
< Pr >

IN

4 2

Similarly, Pl‘[ =1] >

* We just showed:

Yool =1 o1,



t ,-sampling

« Maintain ~0, and (1 + 0.1>-approximation to
* Hash items using h [ ]ﬁ[O,Z - 1] for € [log ]

* For each , maintain:

=(1z020)/f In( )=0}



Proof of Lemma

e Let = “Og ~0] and note that 2 <2 <12

* Forany ,Pr[h ():0] :i

2
* Probability there exists a unique such that h ( ) - 0,

ZPr[h()zO v #,h( )#0]
ZPr h() Pr V # h()#O‘ C)_OJ

0 0



Sparse Recovery

Goal: Find  such that H - H1 is minimized

among ‘s with at most non-zero entries.

Definition: ( ) = min H - H1
g8y =

Exercise: ( ): Z‘ ‘where are indices
¢

of largest

Using ( -1 log )space we can find = such



Count-Min Revisited

 Use Count-Minwith = (lOg ), =4 /
* For E[ :I,Iet~ = h()forsomerow E[ ]

e let = { 1 } be the indices with max. frequencies. Let

be the event there doesn’t exist € / with h ( ) = h [ ]

e Then for E[ :

Pr‘ —”‘2 C)-




Sparse Recovery Algorithm

Use Count-Min with = (log ), =4 /
let = [”1, ”2, .., ) befrequency estimates:

., ()
|-

Let © be “with all but the k-th largest entries
replaced by 0.

Lemma: ||~ - H15(1+3 ) ( )
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Let ,

~

and

-

For a vector

formed by zeroing out all entries of

< ||

ER and C [ ]denote as

|,=(@+3 ) ()

[ ] be indices corresponding to largest value of

the vector

except for those in

o |

gl HEH‘
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Thank you!

e Questions?



