
Sublinear Algorihms for Big Data

Grigory Yaroslavtsev
http://grigory.us

Lecture 3

http://grigory.us/

SOFSEM 2015

• URL: http://www.sofsem.cz
• 41st International Conference on Current Trends in

Theory and Practice of Computer Science (SOFSEM’15)
• When and where?
– January 24-29, 2015. Czech Republic, Pec pod Snezkou

• Deadlines:
– August 1st (tomorrow!): Abstract submission
– August 15th: Full papers (proceedings in LNCS)

• I am on the Program Committee ;)

http://www.sofsem.cz/

Today

• Count-Min (continued), Count Sketch
• Sampling methods
– ℓ2-sampling
– ℓ0-sampling

• Sparse recovery
– ℓ1-sparse recovery

• Graph sketching

Recap

• Stream: � elements from universe �
= {1,	2,	…,	�}, e.g.
〈 �1,�2,…,	��〉 = 〈5,	8,	1,	1,	1,	4,	3,	5,	…,	10〉

• �
�
 = frequency of � in the stream = # of

occurrences of value �,	� = 〈�1,…,	��〉

Count-Min

• �1,…,��: � →[�] are 2-wise independent hash
functions

• Maintain � ⋅ � counters with values:
�
�,�
= # elements � in the stream with �

�
� = �

• For every � the value �
�,�
�
(�)
≥ �
�

 and so:

�
�
≤ �
�
̃ =min(�

1,�1 �
,	…,�

�,�1 �
)

• If � =
2
�

 and � = log2
1
�
	 then:

Pr �
�
≤ �
�
̃ ≤ �

�
+ � � 1 ≥ 1	 − �.

More about Count-Min

• Authors: Graham Cormode, S. Muthukrishnan [LATIN’04]
• Count-Min is linear:

Count-Min(S1 + S2) = Count-Min(S1) + Count-Min(S2)

• Deterministic version: CR-Precis
• Count-Min vs. Bloom filters
– Allows to approximate values, not just 0/1 (set membership)
– Doesn’t require mutual independence (only 2-wise)

• FAQ and Applications:
– https://sites.google.com/site/countminsketch/home/
– https://sites.google.com/site/countminsketch/home/faq

https://sites.google.com/site/countminsketch/home/
https://sites.google.com/site/countminsketch/home/faq

Fully Dynamic Streams

• Stream: � updates �
�
,	Δ
�
∈ � ×ℝ that define

vector � where �
�
= ∑
�:�
�
= �
Δ
�
.

• Example: For � = 4

〈 1,3 ,	 3,	0.5 ,	 1,2 ,	 2, − 2 , 2,1 ,	 1, − 1 ,	(4,1)〉
� = (4,	 − 1,	0.5,	1)

• Count Sketch: Count-Min with random signs
and median instead of min:	

Pr |�
�
̃ − �

�
| + � � 1 ≥ 1	 − �

Count Sketch

• In addition to �
�
: � →[�] use random signs

� � → − 1,1

�
�,�
= ∑
�:�

�
� = �

�
�
� �

�

• Estimate:
�̂
�
=������(�1(�)�1,�1 �

,	…,�� � ��,��(�)
)

• Parameters: � =� log
1
�	
,	� =

3
��

Pr |�
�
̃ − �

�
| + �| � |1 ≥ 1	 − �

ℓ�-Sampling

• Stream: � updates �
�
,	Δ
�
∈ � ×ℝ that define

vector � where �
�
= ∑
�:�
�
= �
Δ
�
.

• ℓ�-Sampling: Return random � ∈ [�] and � ∈ℝ:

Pr � = � = 1 ± �
�
�
�

� �
�

+ � − �

� = 1 ± � ��

Application: Social Networks

• Each of � people in a social network is friends
with some arbitrary set of other � − 1 people

• Each person knows only about their friends
• With no communication in the network, each

person sends a postcard to Mark Z.
• If Mark wants to know if the graph is

connected, how long should the postcards be?

Optimal �
�
 estimation

• Yesterday: (�,�)-approximate �
�

– �̃(�1 − 1 / �) space for �
�
=∑

�

�
�
�

– �̃(log �) space for �2
• New algorithm: Let (�,�) be an ℓ2-sample.

Return � = �2̂ �
� − 2, where �2̂ is an � ± � estimate of �2

• Expectation:

Optimal �
�
 estimation

• New algorithm: Let (�,�) be an ℓ2-sample.

Return � = �2̂ �
� − 2, where �2̂ is an � ± � estimate of �2

• Variance:

��� � ≤ � �2 = ∑
�

�� � = � � �2|� = �

= � ± 2�� ∑
� ∈ �

�2
�

�2
�22�

2 � − 2
�

= � ± 2���2�2� − 2 ≤ �
± 2	���1 −

2
��
2
�

• Exercise: Show that �2�2� − 2	
≤ �1 −

2
�	�2�

• Overall: � � = � ± ���
�
,	��� � ≤ � ± 2	��	�1 −

2
��
2
�

– Apply average + median to � �1 −
2
�	� − 2 log � − 1 copies

ℓ2-Sampling: Basic Overview

• Assume �2 � = 1. Weight �
�
 by �

�
=
1
�
�

	, where

�
�
∈ � 0,1 :

� = �1,�2,…,	��
� = (�1,�2,…,	��) where �

�
= �

�
�
�

• For some value �, return �,�
�

 if there is a unique � such that �2
�
≥ �

• Probability (�,�
�
) is returned if � is large enough:

ℓ2-Sampling: Part 1

• Use Count-Sketch with parameters (�,�) to sketch �

• To estimate �2
�
:

�2
�
=������

�
�2
�,h
�
�

 and �2
�
̂ =
�2
�
̂

�
�

• Lemma: With high probability if � =� log �
�2
�
̂ = �2

�
� ± � ±�

�2 �

��
• Corollary: With high probability if � =� log � and �

≫
�2 �

�
,

�2
�
̂ = �2

�
� ± � ±

1
�
�

Proof of Lemma
• Let �

�
= �
�
� �

�
+ �

�

• By the analysis of Count Sketch � �2
�
≤
�2(�)
�

 and by Markov:

Pr �2
�
≤
3�2 �
�

≥
2
3

• If �
�
≥
2
�
�
�
, then �

�,	h
�
�
2	 = � ± � �

�
2

• If �
�
≤
2
�
�
�

, then

ℓ2-Sampling: Part 2

• Let �
�
= 1 if �

�
̂ 2�

�
≥
4
�

 and �
�
= 0 otherwise

• If there is a unique � with �
�
= 1 then return �,	�

�
̂ 2 .

• Note that if �
�
̂ 2�

�
≥
4
�

 then
1
�
�

≤
��
�
̂ 2

4
 and so

�
�
̂ 2 = �2

�
� ± � ±

1
�
�

= �2
�
	� ± � ±

��
�
̂ 2

4
,

therefore �2
�
= � ± 4�	�

�
̂ 2

• Lemma: With probability Ω(�) there is a unique � such

that s
�
= 1. If so then Pr � = � ∗ = � ± 8	��2

� ∗

Proof of Lemma

• Let t =
4
�
. We can upper-bound Pr �

�
= 1 :

Pr �
�
= 1 = Pr �

�
̂ 2�

�
≥ �

≤ Pr
�4��2

�

�
≥ �

�
≤
�4��2

�

�

Similarly, Pr �
�
= 1 ≥

� − 4��2
�

�
.

• Using independence of �
�
, probability of unique � with �

�
= 1:

∑
�

Pr �
�
= 1,	∑

� ≠ �
�
�
= 0 ≥∑

�

Pr �
�
= 1 1	 −∑

� ≠ �
Pr �

�
= 1	

≥∑
�

� − 4��2
�

�
1	 −

∑
� ≠ �
�4��2

�

�
	

≥
� − 4� 1	 −

�4�

�

�
≈ 1 / �

Proof of Lemma

• Let t =
4
�
. We can upper-bound Pr �

�
= 1 :

Pr �
�
= 1 = Pr �

�
̂ 2�

�
≥ �

≤ Pr
�4��2

�

�
≥ �

�
≤
�4��2

�

�

Similarly, Pr �
�
= 1 ≥

� − 4��2
�

�
.

• We just showed:

∑
�

Pr �
�
= 1,	∑

� ≠ �
�
�
= 0 ≈ 1 / �

• If there is a unique i, probability � = � ∗ is:

Pr[�
� ∗
= 1,	∑

� ≠ �
�
�
= 0]

∑
�

Pr �
�
= 1,	∑

� ≠ �
�
�
= 0

= � ± 8��2
� ∗

ℓ0-sampling

• Maintain �0̃ , and 1 ± 0.1 -approximation to �0.
• Hash items using h

�
: � → 0,2� − 1 for � ∈ log �

• For each �, maintain:
�
�
= 1 ± 0.1 |{�|h

�
� = 0}|

�
�
= ∑
�,	h
� �

= 0
����

�
�
= ∑
�,	h
�
� = 0

��	

• Lemma: At level � = 2 + ⌈ log �0̃ ⌉ there is a unique

element in the streams that maps to 0 (with constant
probability)

Proof of Lemma

• Let � = ⌈ log �0̃ ⌉ and note that 2�0 < 2
� < 12	�0

• For any �, Pr h
�
� = 0 =

1
2�

• Probability there exists a unique � such that h
�
� = 0,

∑
�

Pr h
�
� = 0	���	 ∀ � ≠ �,	h

�
� ≠ 0

=∑
�

Pr h
�
� = 0 Pr ∀ � ≠ �,	h

�
� ≠ 0 h

� �
= 0]

Sparse Recovery

• Goal: Find � such that �	 − � 1 is minimized
among �′s with at most � non-zero entries.

• Definition: ���� � = min
g: g 0 ≤ �

�	 − � 1 	

• Exercise: ���� � =∑
� ∉ �

�
�

 where � are indices

of � largest �
�

• Using � � − 1� log � space we can find �̃ such
that �̃ 0 ≤ � and

�̃ − � 1 ≤ 1 + � ���
�(�)

Count-Min Revisited
• Use Count-Min with � =� log � , � = 4� / �
• For � ∈ � , let �̃

�
= �
�,h
�
�

 for some row � ∈ �

• Let � = {�1,…,	��} be the indices with max. frequencies. Let �
�

be the event there doesn’t exist � ∈ � / � with h
�
� = h

�
(�)

• Then for � ∈ � :

Pr �
�
− �
�
̃ ≥

����� �

�
=

Pr not	�
�
× Pr �

�
− �
�
̃ ≥

����� �

�
|���	�

�

+

Pr �
�
× Pr �

�
− �
�
̃ ≥

����� �

�
|	�
�

Sparse Recovery Algorithm

• Use Count-Min with � =� log � , � = 4� / �
• Let �′ = (�1̃ ,	�2̃ ,	…,	��̃) be frequency estimates:

�
�
− �
�
̃ ≤

�����(�)
�

• Let �̃ be �′ with all but the k-th largest entries
replaced by 0.

• Lemma: �̃ − � 1 ≤ 1 + 3	� ���
�(�)

�̃ − � 1 ≤ 1 + 3	� ���
�(�)

• Let �,	�⊆ � be indices corresponding to largest value of �
�

and �̃
�
.

• For a vector � ∈ ℝ� and � ⊆ [�] denote as �� the vector

formed by zeroing out all entries of � except for those in �.
�	 − �′

� 1 ≤ �	 − �
� 1 + �

�
− �′
� 1

= � 1 − �
� 1 + �

�
− �′
� 1

= � 1 − �′
� 1 + �′

� 1 − �
� 1

+ �
�
− �′
� 1

≤ � 1 − �′
� 1+ 2 �

�
− �′
� 1

≤ � 1 − �′� 1+ 2 �
�
− �′
� 1

Thank you!

• Questions?

