

Distance Learning 2020 Week 1

AP Exam Update, Binary Search, & Merge Sort

Assignments (not from Edhesive) are accessible in Microsoft Teams on Office 365. Work can also be
submitted in Teams, which I highly encourage you to do if you are able to. You can contact Ms. Evans
if you need help with Teams. You must write your name in pen on each page of your assignment.
The work in this packet is not officially due until 5/8/2020. However, I have broken down the work into
daily chunks to help you manage your time. I encourage you to have the work from week 1 complete by
4/24/2020. New assignments for weeks 2 and 3 will be given that date.
My office hours are 1 pm – 3 pm, M–F. You can reach me through Remind (class code: @evans-csa),
email (kevans@tusd.net) or chat on Teams. Please continue to check your email regularly.

Ms. Evans will be holding a half hour meeting on Microsoft Teams to talk about the algorithms in the
notes for the week and answer questions on Tuesday 4/21. Check in Teams in the posts or the calendar
to find the exact time.

Week 1: Day 1 (turn in by 5/8/2020): Review information about the updates to the AP Computer
Science A exam.

1. Read over the AP Computer Science Exam Updates PowerPoint slides.
2. Write 1-2 thoughtful paragraphs about what this means for you, the rest of the year, and what

questions you have. (Assignment #1)

*If turning in work on Teams, you can type up your answer and upload the file. Or, you can write your
answer on binder paper and then upload a picture of it. Please write your name in pen on each page
before you take a picture. Make sure your picture is clear and readable.

Week 1: Day 2 (turn in by 5/8/2020): Lesson 17, Binary Search

Online: Complete Lesson 17 on Edhesive. Make sure to watch the lesson video and read the lesson
summary.
Offline: Read over notes on Lesson 17. Then complete Assignment #2, Lesson 17 problems.

From the Teacher: K. Evans
Class: AP Computer Science A
Periods: 1 and 3
Assignment: Week 1

If turning in paper packet and work, make sure to
include this header information on all pages!

From the Student:
Student Name
Teacher Name
Name of class
Period #
Assignment #

mailto:kevans@tusd.net
mailto:kevans@tusd.net
https://edhesive.com/users/sign_in
https://edhesive.com/users/sign_in

Week 1: Day 3 (turn in by 5/8/2020): Lesson 18, Merge Sort
Online: Complete Lesson 18 on Edhesive. Make sure to watch the lesson video and read the lesson
summary.
Offline: Read over notes on Lesson 18. Then complete Assignment #3, Lesson 18 problems.

Week 1: Day 4-5 (turn in by 5/8/2020): More Practice

Online: Complete Unit 7 Progress Check (all parts) on college board AP Classroom.
Offline: Write up a summary of all the algorithms for Arrays that we learned in Unit 7.
 (Lessons 13-18)

https://edhesive.com/users/sign_in
https://edhesive.com/users/sign_in
https://myap.collegeboard.org/login
https://myap.collegeboard.org/login

4/5/2020

1

AP COMPUTER
SCIENCE A

2020 AP Exam
Friday, May 15 @ 1:00PM PST

New Testing
Schedule

● 25 min FRQ
● 5 min submit Answer
● 15 min FRQ
● 5 min sumit answer

45 Minutes
Total

New Test Format will be …
What Technology

may I use? Phone
iPad

Tablet
Laptop

Desktop

AP Computer Science Exam Updates PowerPoint

4/5/2020

2

If you know of students who have a need for
technology or connectivity in order to take their

AP Exam, please
contact Mrs. Rotondi ASAP

College Board has to know before April 24.

TWO OPTIONS

1. Type your answers on
your electronic device

2. Handwrite your answers,
take a photo with your
phone, and submit using
your electronic device

25 Minute FRQ

Free-response question 3: Array / ArrayList the question will asses your ability to do the
following:

● Write program code to satisfy method specifications using expressions, conditional
statements, and iterative statements.

● Write program code to create, traverse, and manipulate elements in 1D array or ArrayList
objects

Worth 65% of score 15 Minute Question

Free-response question 1: Methods and Control Structures the question will asses your ability
to do the following:

● Write program code to create objects of a class and call methods.

● Write program code to satisfy method specifications using expressions, conditional
statements, and iterative statements.

Worth 35% of score

4/5/2020

3

Other Information

● An Interactive Development Environment (IDE) or compiler (for example Dr. Java or repl.it)
is not required for the 2020 AP Computer Science A Exam, and students will not have an
advantage if they use one. However, students may use an IDE or compiler if they choose.

General Exam Features

● Like many college-level exams, this year’s AP Exams will be open book/open note. Get tips for
taking open book/open note exams.

● Students will be able to take exams on any device they have access to—computer, tablet, or
smartphone. They will be able to either type and upload their responses or write responses by
hand and submit a photo via their cell phone.

● In late April, information on how to access the testing system on test day, and video
demonstrations so that students can familiarize themselves with the system will be released.

● College Board has free online classes/review videos on YouTube, organized by subject and
Topic: https://www.youtube.com/user/advancedplacement

AP Computer Science A Testing Dates

Friday, May 15, 2020 @ 1:00 PM
From your home on your device

Makeup Date
Friday, June 3, 2020 @ 11:00 AM

ONLY if you have a conflict with May 18
Must be validated by your school

We Have Four WEEKS
(From Mon 4/20)

● Learn the remaining lessons needed for
the exam (Lessons 17 & 18)

● Review the key concepts we have
studied

● Take advantage of the Personal
Progress Checks in AP Classroom

● Utilize multiple practice exams that
mimic the current exam structure over
the next six weeks

Week 1: Lesson 17 Notes

Lesson 17: Binary Search

This lesson covers a search algorithm called the binary search.
If we were to search for a particular word in the dictionary using the linear search we covered previously,
we might be reading words for a very long time--especially if our target word is towards the end of the
alphabet.
However, a binary search can find our target word in a much shorter amount of time. A binary search finds
the element in the exact middle of our dataset and compares that value to our target value. If the midpoint
value is too low, we know we don’t need to look at any values from the lower half of the set because they
will also be too low. Just like that, we’ve eliminated a full half of our dataset. With the other half, we can
again split that part in half and run another comparison. Each time we do this, we eliminate half of the
remaining possibilities, closing in on the target with exponential speed until we find it.
There is one rule for using a binary search: the dataset we’re searching through must already be sorted. If
it’s not, we can’t be sure that we haven’t eliminated the entry we’re looking for when we cut out half the
results.
To execute the binary search, we first need to find the midpoint of our dataset. If we call the upper limit of
the set “high” and the lower limit “low”, then the middle point mid = (low + high)/2. Grabbing the value at
this index, we can compare it to our target value. If our target value is too low compared to the midpoint
value, we repeat the process with our new high set to mid-1. If our target value is too high, we repeat with
low set to mid+1. To summarize:

1. Find the value at midpoint mid = (low + high)/2
2. If our target value is:

1. Too low: repeat with high = mid-1
2. Too high: repeat with low = mid+1

3. Repeat until we find our match, or high < low (which means our target does not exist in the set)
In terms of code, there are several ways you can code a binary search. You can do this iteratively, using a
for loop or a while loop, or recursively, having your method call itself.
Compared to a linear search, the binary search has some distinct advantages and disadvantages. Especially
over large sets of data, the binary search can be very fast. However, it can be a little tricky to code, and the
dataset you’re working on must already be sorted (otherwise the binary search won’t work at all!).

Advantage Disadvantage

• Very fast
• More difficult to code
• Array must be sorted

For the AP Exam, it is important to understand the differences between our two types of search: the linear
search and the binary search.

Week 1: Assignment #2 (Lesson 17)
Fast Start

Review

Coding Activity
For this activity, write a class called Lesson_17_Activity which includes the following methods:
o public static boolean isSorted(int [] a) - returns true if the array a is in ascending order and false

otherwise.
o public static int binarySearch(int [] a, int b) - performs a binary search to determine if the

value b is stored in a. If b is found, return the index of b. Otherwise, return -1.
Include both methods in a class called Lesson_17_Activity and write the entire class on your paper.

AP MC Review

Week 1: Lesson 18 Notes

Lesson 18: Merge Sort

This lesson covers the last of the three sorts you will need to know for the AP exam: the merge sort.
So far, our two other sorts--the selection sort and the insertion sort--have been relatively easy to code and
understand, but are very slow when dealing with large datasets. The merge sort, on the other hand, is often
written recursively, which has the advantage of being very fast on large datasets.
In general, the merge sort works by breaking down an array into smaller and smaller pieces until each piece
consists of one element, and then rebuilding the array by comparing the pieces to each other.
It is easiest to view the merge sort as two processes: the breaking down into smaller pieces, and then the
remerging.
Each step of the breaking down phase chops our array in half. Let’s say we have an array of 8 numbers:

[56, 34, 55, 12, 88, 37, 45, 21]

The first step will chop the array in half at the middle to make 2 arrays of 4 elements each:

[56, 34, 55, 12] [88, 37, 45, 21]

Next, each 4-element array will be split in half to 2 elements, and then each 2-element array split down into
arrays of single elements:

[56, 34] [55, 12] [88, 37] [45, 21]
[56] [34] [55] [12] [88] [37] [45] [21]

Now that the array has been split into its single pieces, the real magic can begin: the merging.
The important part to remember when merging is that each step of the merge takes only two of the smaller
arrays and merges them to completion, then moves on to just the next two arrays. So, the first stage of
merging above starts with [56] and [34]. The merge takes the smallest one first and adds it to a bigger array
first. Out of these two arrays, [34] is the smallest, so it gets added to the new array first.

[34, 56]

Then, we repeat with the next few pair of arrays:

[34, 56] [12, 55] [37, 88] [21, 21]

At this point, we again merge only two arrays at one time to make a single bigger array. The trick at this
point is to remember that once you add an element from one of the smaller arrays, the “pointer” moves one
spot forward in that array only, and you compare the new number with the same number from the other
array. To understand this, let’s just look at the first two arrays in our current set: [34, 56] and [12, 55].
The “pointer” starts off at the first spot in each, so our first comparison is between 34 and 12. Since 12 is
smaller, it gets added to the new array first. Now, the “pointer” in our second smaller array moves to the 55,
but our other pointer is still on the 34. Thus, the next comparison is between 34 and 55. Since 34 is smaller,
it gets added to the new array, and that “pointer” moves to the 56. We repeat for 55 and 56, adding the 55,
and then adding the 56 because it’s the only one left.

Old arrays: [34, 56] [12, 55]
New array: [12, 34, 55, 56]

Repeating this process with the other half of our origin array, we have the following:

[88] [37] [45] [21]

[37, 88] [21, 45]

[21, 37, 45, 88]

Now, our two working arrays are [12, 34, 55, 56] and [21, 37, 45, 88]. Note that each of these arrays
is already in proper sorted order. Performing the merge again, we end up with our final sorted array:

[12, 21, 34, 37, 45, 55, 56, 88]

When tracing the behavior of the merging phases, it may be easiest to cross out each element from the
smaller arrays as you add it to a bigger array. This can help ensure that you know where your pointer is, and
that the elements are merged in the proper order.
As you have probably gathered, the processes involved in the merge sort can be a little complicated. Like
the other sorts, it is highly unlikely you’ll be asked to actually code the merge sort on the AP exam from
scratch; however, it is important to understand how it works for multiple choice questions.
Remember: the merge sort, while complicated, works incredibly fast on large datasets because of its
recursive nature.

Advantage Disadvantage
Very fast, especially for large datasets

(recursive) Multiple parts can be difficult to code

Week 1: Assignment #3 (Lesson 18)
Fast Start

Review

AP MC Review

Unit 7 Review – AP MC Review

