
Teaching Formal Methods in Computer Science Undergraduates

A. SOTIRIADOU and P. KEFALAS
Department of Computer Science

CITY Liberal Studies, Affiliated Institution of the University of Sheffield
13 Tsimiski Street, 546 24 Thessaloniki,

GREECE
{sotiriadou, kefalas}@city.academic.gr URL: http://www.city.academic.gr/

Abstract : - Formal Methods refer to a variety of mathematical modeling techniques, which are used both to
model the behaviour of a computer system and to verify that the system satisfy design, safety and functional
properties. The incorporation of a Formal Methods course in the undergraduate Computer Science curriculum
is strongly suggested by scientific societies such as ACM, IEEE and BCS. In this paper, we record out
experience of teaching the 2nd year Computer Science students Formal Specification, using the Z notation as a
paradigm. We present a methodology for teaching formal specification as well as criteria for setting and
assessing students work. We argue that students, through a rigorous mathematical approach to system
specification, acquire knowledge, skills and abilities that are useful in all courses of the curriculum as well as in
their professional lives as Computer Scientists.

Keywords: - Computer Science Curriculum, Teaching and Learning, Formal Methods, Formal Specification.

1 Introduction
Software reliability is a desirable property,
especially in safety critical systems. To this end,
the promotion of formal methods in the software
development process is a promising approach [1,2].
Therefore, the introduction of formal methods into
the education of the future computer scientists is
vital for the success of formal methods [1, 3, 4, 5].

Scientific societies such as the Association for
Computer Machinery (ACM), the Institute of
Electronic and Electrical Engineering (IEEE-
Computer Society) [6], and the British Computer
Society (BCS) [7] list formal methods as one of the
concepts that an undergraduate programme in
Computer Science (CS) should incorporate.

In this paper, we record our experience on the
twofold role that a Formal Methods course plays in
the CS undergraduate curriculum. We believe that
such a course is of extreme importance to an
undergraduate CS student, and do not only
contribute to the student’s knowledge but most
importantly to the appreciation of formal
specification and also to the skills acquired through
the corresponding learning process.

In the next sections, we present the goals of the
specific course in formal methods. We then provide
a justification for adapting the notation used, i.e.
the Z specification language. A description of the
teaching method and the teaching material follow.
Finally, we discuss ways of assessing student
performance and the opinions of the students for
the particular course.

2 Aims of the course
Formal methods refer to the variety of
mathematical modelling techniques that are used to
specify and model the behaviour of a computer
system and to verify that the system design and
implementation satisfy system functional and safety
properties. These specifications and verifications
may be done using a variety of techniques and with
various degrees of rigor.

Formal specification is the use of notations
derived mostly from formal logic in order to
describe assumptions about the world that a system
will model, requirements that the system should
achieve and a design to achieve those requirements.

Many CS departments of traditional Universities
have incorporated formal methods in their
curricula. Most of those courses cover aspects of
both formal specification and formal verification,
following a breadth-first approach. Our approach,
however, in designing the specific formal methods
course incorporates solely the formal specification
component, which is taught in depth. There are a
number of reasons for suggesting the latter. First,
for many CS students it is already difficult to
conceive that mathematics and mathematical
modelling play an essential role in Computer
Science. Secondly, during their first year of studies
students have completed among others, courses in
Structural and Object Oriented Programming,
Programming Methodology and Systems Analysis
and Design. Our experience shows that by the
beginning of the second year of their studies they

have not appreciated yet the importance of
specification, yet alone of formal specification in
software lifecycle. Of course, there are ways to
prepare the students in order to receive their first
introduction to formal methods, mainly by the
Discrete Mathematics course, which are discussed
elsewhere [8]. However, we believe that, even with
an extensive exposure to Logic and Set Theory,
they have not developed yet the necessary
intellectual abilities in order to be exposed in many
different issues on formal methods. Lastly, our
approach coincides with other proposals [4] which
state that it is preferable to emphasize depth in
early courses in formal methods.

The major aims of the course we offer is to assist
students:
• Abandon their attitude that equates the

development of a system with the task of
writing code; make the students think very
carefully about the unambiguous description of
the system and appreciate the significance of
formal specification in the development of
reliable systems.

• Understand that in the process of developing
reliable systems, formal specifications offer the
opportunity to understand better the system
under development, by revealing
inconsistencies and ambiguities that could
otherwise remain undetected.

• Recognize that the exposure of those
inconsistencies is important in early stages of
the development of a system.

• Realize that formal specifications contribute in
enhancing the communication between client
and developer, when insights obtained from the
mathematical model initiate further discussions
with the client.

• Learn how to design a complete and well-
structured mathematical model of a system in a
widely used notation, namely the formal
specification language Z.

• In the acquisition of skills important in CS
education. A crucial advantage of formal
specification is that it permits for abstraction,
that is, the description of systems without
dealing with implementation details. Therefore,
in a formal methods course students are
exposed to the process of abstraction, which
according to [6] should be a prominent concept
in the CS undergraduate curricula.

3 Choosing the Notation
Our philosophy for designing such a course is not
to simply teach a specific formal notation but rather
to address the issues of mathematical modelling
and those important processes, such as abstraction
and problem solving. Nevertheless, a vehicle with
which these concepts are taught should be chosen.
We have adopted a notation, which we believe best
reflects the aims of the course. The chosen notation
is the Z specification language.

Z is a formal specification language, which has
been developed at the Programming Research
Group at the Oxford University Computing
Laboratory since the late 1970s. It is used by
industry as part of the software (and hardware)
development process. Z has been successfully used
to specify many software systems including
database systems, transaction systems, distributed
computing systems, and operating systems [9].

Z is a formal specification notation based on set
theory and first order predicate logic. Together they
make up a mathematical language, which is only
one aspect of Z. For a more detailed description of
Z, the reader may consult [10,11].

The following characteristics of Z are the main
reasons that justify our decision to choose it as the
notation for the course:
• Z is a very popular language both in the

Industry and in the Academia [3].
• Our students have already studied during their

first year the mathematical concepts of logic
and set theory, needed to construct
specifications in Z.

• One of the advantages of Z, is that allows for
both procedural abstraction- separation of
what a program does from the details of how it
does it- and data abstraction - abstracts details
of the representation of data away from any
particular programming language data
structures. Therefore, students are explicitly
exposed to and utilize the abstraction process.

• Another aspect of Z is the way in which the
mathematics can be structured. Schemas form
the backbone of Z specifications, helping to
structure and modularise specifications; the
schema language can be used to describe the
state of a system, and the ways in which that
state may change. In Z, schemas can be
referred to and composed with other schemas,
hence a schema is analogous to the idea of a
module or subprogram in a programming
language.

• In addition, this graphical notation of Z,
schemas, aids the development of readable and

well-structured specifications. This is important
to students especially when they read
specifications developed by others.

• The schemas are used to describe system
properties. Therefore, students are required to
look for and describe essential properties of a
system such as invariants and pre-conditions.

• A characteristic feature of Z is the use of types.
Every object in the mathematical language has
a unique type, which provides a useful link to
programming practice. All types in Z can be
considered as sets. They consist either of basic
type, this is either predefined or user-defined
set, or a complex type made up from the basic
types.

RESERVE_SYS
capacity: TABLE → N
occupied: CUSTOMER → TABLE
available: P TABLE
waiting-list:seq CUSTOMER → N

ran occupied ∩ available = ∅
ran occupied ∪ available = dom capacity
dom occupied ∩ ran(dom waiting_list)=∅
waiting_list ≠ ∅ ⇔ available = ∅
∀ c1, c2 : CUSTOMER • c1 ≠ c2 ⇒
 occupied (c1) ≠ occupied (c2)

Check
Δ RESERVE_SYS
name?: CUSTOMER
test?: BOOLEAN

name? ∈ dom occupied
waiting_list ≠ ∅
capacity’ = capacity

occupied’ = ({name?} occupied)
available’=available∪{occupied (name?)}
test? ⇔capacity(occupied(name?)) ≥
waiting_list(1,(head(domwaiting_list)))

Fig. 1: System State Schema and the Operation’s
Check Schema of the Specification of a
Restaurant’s Reservation System.

The general format of a schema is a box, which
includes two parts separated by a line segment: the
declarative part and the predicate part. Fig. 1
presents a Z schema that might be part of a
specification for a restaurant’s reservation system
responsible for monitoring the assignment of
customers to tables. We may introduce the basic
types [TABLE, CUSTOMER] to define the
"universal" sets of all possible tables and
customers.

The declaration part of a schema includes the
data abstraction. The declarative part of the
reservation system declares a set and three
functions, where the waiting-list has a sequence
as its domain and represents the waiting list of
customers together with the size of their
corresponding party. The predicate part of a
schema includes predicates that need to be true if
the requirements of the system are to be satisfied.
The first predicate in the predicate part of the
security system ensures that a table should be either
available or occupied by a customer, not both.

In addition, in Fig.1 the specification of the
Check operation is presented, where given the name
of a customer who has completed his dinner, the
given customer and his party leave, and the first
customer in the waiting list is checked whether
could sit in the freed table or not; that is, it is
examined whether the size of the customer’s group
could fit in the freed table.

4. The Teaching and Assessment

Method
In our undergraduate curriculum, we have included
the Formal methods course in the 2nd year of
studies, taught within one semester, i.e.
approximately 36 conduct hours, including lectures
and tutorials.

4.1 The Teaching Method
In order to fulfill the aims of the course and to help
students enhance their reasoning and problem
solving skills our teaching approach includes the
following:

• The number of students in a classroom does not

exceed 25 and during tutorials two lecturers are
present, keeping in that way a rather low
student-faculty ratio. This enables the creation
of a classroom environment that supports active
learning [5]. The active learning approach is
adopted both during lecture hours and tutorials.

• During a regular two hours lecture initially new
topics are introduced and then how they
utilized through a specific case study.
However, the specification of the case study is
not produced by the lecturer. It is rather the
output of an ongoing interaction with students.
The role of the lecturer is to pose key questions
and to guide students in producing the formal
specification. In this way students are actively
involved in the process and are not passive
receivers of information. Even when a

student’s approach is not appropriate it is left to
the rest of the students to uncover the
deficiencies.

• During classes students form 2-3 members
groups and they work on specific case studies
assigned to them. The cases are presented to
students in natural language and include
ambiguities intentionally. As students proceed
in constructing the formal specifications those
ambiguities are revealed. Then the students
need to discuss those ambiguities with the
lecturers, who play the role of clients.
Therefore, students realize and appreciate the
contribution of a formal specification in the
clarification of the systems requirements and in
aiding the software development process.

• In some tutorials students are presented with Z
formal specifications of systems and are
requested to understand them and interpret
them in natural language. In this way students
enhance the skill that a software developer
need to not only produce but also to read and
understand a specification.

• In addition, students are presented form early
lectures with a specific methodology on how to
approach a construction of a formal
specification in Z. This includes issues ranging
from how to read the specification in natural
language and define the basic types, up to steps
that should be followed in constructing the
system state schema and operations schemas
for schema calculus. We believe that this
explicit guidance is important instead of
leaving students extract the methodology from
the lectures on their own.

• It is sometimes useful to begin with semiformal
specifications in order to relief the students to
learn the notation at early stages and focus on
specification issues. It is an extra burden for
students to familiarize with the syntax of Z, and
therefore the approach of semiformally
specifying a simple problem is adopted.

4.2 Content and Reading Material
During the first couple of weeks properties of good
quality software, impediments for developing
reliable systems, and reasons that led to the
software crisis and the emergence of Formal
Methods are discussed, followed by a brief review
of logic and set theory. We proceed with the Z
notation, schemas and schema operations. During
the remainder of the course we consider

specifications using sets, functions, bugs,
sequences and relations.

In the past we were suggesting specific textbooks
for our students to buy and additionally we were
providing them with lecture notes [12]. For a
number of years, students’ evaluations of the
course revealed that they based their study solely
on our notes. Therefore, we do not suggest any
more a specific textbook but rather we provide a
reading list, which consist of a number of books
and articles. In addition, we have developed a web
page for the specific formal methods course, from
where students can acquire, the lecture notes, the
case studies we discuss during lectures and
tutorials, links to other interesting formal methods
sites, and a frequently asked question page.

4.3 Assessment
Assessment of students consists of two parts:
coursework and examination, contributing to their
final grade by 30% and 70% respectively.

The coursework is divided into two assignments
with different objectives:

the first is focused on reviewing set theory
and predicate logic and on the development
of the semiformal specifications of two
information systems.
the second is focused on the development of
formal specifications in the Z language of
simple systems.

The students know the criteria for assessment in
advance. This is useful in order for them to
concentrate on specific issues during their work of
specifying a system and not bother with
unnecessary details, which are not relevant to the
course aims. The criteria set in the assignment
handout requires from the students to:

understand a given formal specification of a
system state and being able based on this
specification to produce formal
specifications of operations for that system.
understand the possible constraints of a
system and interpret them using formal
language into the invariants of the system.
design complete and well structured Z
specifications of systems.
produce appropriate data and procedural
abstractions.
construct robust formal specifications.
describe and explain the rational of using
specific concepts for the Z specification they
propose.

On the other hand, the examination paper is set in
such a way that a student should demonstrate both

understanding and ability to construct a formal
specification. This is achieved through the division
of the number of exercises to those that the students
should explain and justify a given specification and
those in which the students, given an initial
informal description of a system, are requested to
write Z notation for specific operations. Our
experience in assessing the exam paper showed us
that it is rather difficult to assess an answer, which
includes a specification written from scratch. It is,
therefore, advised to potential lecturers of the
course to give away to the students at least part of
the system state schema on which their
specifications will be based. Otherwise, the
possibilities of correct specifications are endless,
with the students temped to construct the most
complicated ones. Their choice on system state is
rather crucial for the time needed to answer an
exam question while their answer may not satisfy
the question’s objectives.

5. Evaluation and Conclusions
We have presented a way to incorporate Formal
Methods in the Computer Science Curriculum as
well as a methodology for teaching and assessing
such a course.

The validity of our approach is demonstrated by
two factors: (a) the positive comments made by the
external examiners through a series of years, and
(b) the feedback from students. The latter is
acquired by the student evaluation questionnaires,
which are distributed to the students at the end of
the semester. A comparative study showed that the
students believe that the Formal Methods course
has increased their knowledge and skills (3.9 and
3.8 in a scale of 5) more than the rest of the course
run in parallel (Java, Logic Programming, and
Operating Systems). In addition, students by the
end of the course think that formal specification has
rather less difficulty than the concepts introduced in
other courses. This result is encouraging, since the
students are often prejudged against any
mathematical course.

Concluding, we would like to urge our colleagues
of other Universities to adopt Formal Methods as a
means to convince students that Computer Science
is not just about Programming, and also as a
vehicle to introduce concepts and exercise skills,
which are spread out not only in all Computer
Science courses but also in the future professional
careers.

References:

[1] E. C. Clarke, J. M. Wing, Formal Methods:
State of the Art and Future Directions, ACM
Computing Surveys, Vol. 28, Number 4es,
pp. 116-116, December 1996.

[2] A. Harry, Formal Methods Fact File: VDM
and Z, Wiley, 1996

[3] C. J. Burgess, The Role of Formal Methods
in Software Engineering, Education and
Industry, Proceedings of the 4th Software
Quality Conference, pp. 98-105, July 1995.

[4] Report on the 21st Century Engineering
Consortium Workshop ©, A forum on
Formal Methods Education, Melbourne
Florida ,1998.

[5] H. Walker, H. C. Cunningham, and R. Davis,
D. Troeger, Formal Methods in the
Undergraduate Computer Science
Curriculum, Proceedings of the 26th
Technical Symposium on Computer Science
Education, SIGCSE Bulletin, Vol. 27, pp.
398-399, ACM Press, March 1995

[6] A. Tucker (Ed.), Computing Curricula 1991:
Report of the ACM/IEEE-CS Joint
Curriculum Task Force, 1991.

[7] Course Accreditation, The British Computer
Society, June 1996

[8] A. Sotiriadou, P.Kefalas, Logic and Sets in
the Computer Science Curriculum,
Proceedings of the 2nd Panhellenic Logic
Symposium, Delphi, pp. 191-196, July 1999

[9] I. J. Hayes (ed.), Specification Case Studies.
Second Edition. London: Prentice-Hall,
1992.

 [10] J. Bowen, [J.P.Bowen@reading.ac.uk],
Information about the Z formal specification
notation, [http://www.cis.ohio-state.edu/
hypertext/faq/usenet/z-faq/faq.html]

[11] J. M. Spivey, The Z notation: a reference
manual, Prentice Hall International, 2nd
Edition, 1992.

[12] A. Sotiriadou, Formal Methods Lecture
Notes, [http://www.city.academic.gr/intranet/
courses/BSc_Computer_Science/csd2300/
Pages/FMNotes.htm]

