Substances, Compounds & Mixtures

Substances

 Matter that has the same composition and properties throughout is called a substance.

When different elements combine, other substances are formed.

Substances

Picture from http://www.ilpi.com/msds/ref/gifs/statesofmatter.gif

- Contains only one particle
- Can exist in 3 states of matter
- Can be elements or compounds

Elements

 All substances are built from atoms. If all the atoms in a substance have the same identity, that substance is an element

Compounds

 A compound is a substance whose smallest unit is made up of atoms of more than one element bonded together.

Compounds often have properties that are different from the elements that make them up.

Examples: Water, salt, sugar

Compounds Have Formulas

• H₂0 is the chemical formula for water, and H_2O_2 is the formula for hydrogen peroxide. The formula tells you which elements make up a compound as well as how many atoms of each element are present.

Compound Review

- A pure compound has the same elements and the same amount of elements all of the time
- Elements are chemically combined
- Compound properties are different from the properties of the elements
- They cannot be separated physically
- Physical properties such as boiling point or melting point of pure substances are do not change

Mixtures

IN A MIXTURE OF SALT AND IRON, THE IRON CAN BE REMOVED WITH A MAGNET. A mixture is a combination of two or more substances where there is no chemical combination or reaction.

Mixtures combine physically in no specific proportions. They just mix.

Solids, liquids and gases can be combined to create a mixture.

Mixture Types

MIXTURES MAY BE HOMOGENEOUS OR HETEROGENEOUS

Homogeneous Mixtures

Homogeneous Mixtures:
The prefix: "homo"-indicates the same
Have the same uniform appearance and composition throughout

Solutions

SOLUTIONS

are homogeneous mixtures

What is a solution?

- A solution is a mixture of two or more substances.
- At least two substances must be mixed in order to have a solution

A solution has two parts

 The substance in the smallest amount and the one that DISSOLVES is called the SOLUTE

The substance in the larger amount is called the SOLVENT - it does the dissolving

 IN most common instances water is the solvent

Examples of solutions

Salt waterClean AirVinegar

Heterogeneous Mixtures:

- The prefix: "hetero"- indicates difference
- A heterogeneous mixture consists of visibly different substances or phases
- Two or more parts can be seen

Examples:

PizzaSandwichChex Mix

Suspensions

 A SUSPENSION is a heterogeneous mixture of large particles

These particles are visible and will settle out on standing

 Examples of suspensions are: fine sand or silt in water or Italian salad dressing

Colloids

A colloid is a type of mixture with particles that are larger than those in solutions but not heavy enough to settle out.

 Examples include: Paint (liquid with suspended colloid particles) and Fog (particles of liquid suspended in air)

Colloids are detected with the Tyndall Effect which is the scattering of light by colloidal particles

Tyndall Effect

Compounds vs Mixtures

Mixtures Compounds Not chemically **Combine chemically** combined forming molecules **Can combine in any Combine in set proportions** proportion Separated chemically Separated physically

Review!

Draw a concept map of what we have learned about Matter! In other words, map out the differences between substances and mixtures!

Concept Map

Properties of Matter

Another casualty in the War of the Atoms.

Physical Properties

A Physical Property is a characteristic that can be observed or measured without changing the samples composition

Can describe matter and substances

Examples: Density, Color, Odor, Taste, Hardness, Melting Point, Boiling Point

Physical Properties

What properties do elements have?	Element Name	Density	Flame Color	Melting Point	Boiling Point
	Anlimony	medium	green	medium	high
	Banum	medium	yellow-green	high	high
	Calcium	low	red	high	medium
Elements are generally divided into two main groups — metals and nonmetals. Both groups have a number of	Cesium	low	violet	low	low
	Wolybdenum	high	yellow-green	high	high
	Sodium	low	yellow	low	low
	Tollunium	medium	green	medium	low
	Zinc	high	oreen	medium	low
subgroups. All elements have	<u>.</u>			maanan	104
subgroups. All elements have certain properties. For example, most metals are hard, shiny solids. They are good conductors of both heat and electricity. Metals	Density	Flame Co	olor Melting	Point B	
subgroups. All elements have certain properties. For example, most metals are hard, shiny solids. They are good conductors of both heat and electricity. Metals are also malleable and ductile.	Density	Flame C	plor Melting	Point B	oilling Poi
subgroups. All elements have certain properties For example, most metals are hard, shiny solids. They are good conductors of both heat and electricity. Metals are also malleable and ductile.	Density		plor Melting	Point B	oiling Poi

Physical Properties

Physical Properties can be broken down into 2 different types:

Extensive Properties depend on the amount of substance present. (Ex. Mass, Length, Volume)
 Intensive Properties do not depend on the amount of substance present. (Density is the same no matter how much of a substance is present)

Physical Change

A physical change is a change in size, shape or state of matter
A state of matter is whether the matter is a solid, liquid or a gas

States of Matter

 Solids – a form of matter that has its own definite shape and volume

 The particles of a solid are packed tightly together and when heated they expand

Hot vs. Cold Particles in a Solid

Cold

Hot

States of Matter

Liquids are a form of matter that flows, has constant volume and takes the shape of its container
 The particles in a liquid are not held rigidly together and are less closely packed than solids
 Do the particles in a liquid act the same in cold temperatures as they do in hot temperatures?

Hot vs. Cold Particles

• NO!!!!! Why?

States of Matter

A gas is a form of matter that flows to conform to the shape of its container and fills the entire volume of its container

The particles of gas are very far apart compared to liquids and solids Gases can be compressed

Vapor is the gaseous state of a substance that is solid or liquid at room temperature

Hot vs. Cold Particles in a Gas

The gas particles on the right have more kinetic energy than those on the left. So, the gas on the right is at a higher temperature.

Separating Mixtures

Because mixtures do not create new substances and their properties remain the same...mixtures CAN be separated using their physical properties!
 Can you name some ways to separate mixtures?

Chemical Properties

Another property of matter are its chemical properties
 Chemical Properties are the ability of a substance to combine with or change into one or more substances

www.shutterstock.com · 5119123

Check!

1. Classify the 3 following events as physical or chemical properties.

- A. Water and oil not mixing together
- B. A screwdriver rusting due to being outside

C. Vinegar and Baking soda reacting to make a "volcano"
2. Which of the following pictures shows a solid, which a liquid, which a gas?

Chemical Changes

- A process that involves one or more substances changing into new substances is a chemical change or chemical reaction
 - Substances formed in the reaction have different compositions and different properties than the substances

Evidence of Chemical Changes (Reactions)

Heat, Gas or Light is always produced in chemical changes!

Physical and Chemical Changes

https://www.youtube.com/watch?v=X32 8AWaJXvI

Weathering

Weathering is the term that describes all the processes that break down rocks in the environment near the earth's surface.
So, are these processes physical or chemical?
BOTH!!!

Law of Conservation of Mass

Mass is neither created nor destroyed during a chemical reaction

Mass of reactants = Mass of Products

Discovered in the 1700s by Antoine Lavoisier

Check!

- Identify the following as physical or chemical changes
- Liquid Nitrogen is released on the floor of the classroom, it quickly evaporates and is suddenly gone.
- 2. A firework is lit and quickly launches into the air and then explodes into a beautiful red circle.
- 3. You take a breath of fresh air (Mostly Oxygen and Nitrogen) and exhale Carbon Dioxide
- 4. You are having a glass of iced tea on a hot summer day, you suddenly notice your glass is "sweating" and is covered with tiny drops of water outside the glass