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1 Functions and Their Graphs
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1.6 Inverse Functions
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What You Should Learn

• Find inverse functions informally and verify that 
two functions are inverse functions of each 
other.

• Use graphs of functions to decide whether 
functions have inverse functions.

• Determine whether functions are one–to–one.

• Find inverse functions algebraically.
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Inverse Functions
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Inverse Functions

We have know that a function can be represented by a set 
of ordered pairs. 

For instance, the function f   (x) = x + 4 from the set 
A = {1, 2, 3, 4} to the set B = {5, 6, 7, 8} can be written as 
follows.

f  (x) = x + 4: {(1, 5), (2, 6), (3, 7), (4, 8)}

All I did was plug in the numbers in set A into the function 
f(x)=x + 4 to get the associated y values which are set B.
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Inverse Functions

In this case, by interchanging the first and second   
coordinates of each of these ordered pairs, you can form 
the inverse function of which is denoted by f 

–1 It is a 
function from the set B to the set A and can be written as 
follows.

 f  

–1(x) = x – 4: {(5, 1), (6, 2), (7, 3), (8, 4)}

Note that the domain of is 
equal to the range of f –1 and 
vice versa, as shown in 
Figure 1.56. 

Figure 1.56
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Inverse Functions

You may remember from last year:  when you are looking 
for the inverse, interchange x and y and solve for y.

Example
If f(x) = x – 4, you may want to rewrite it y = x – 4.

Then interchange x and y to get x = y – 4.

Solve for y by adding 4 to both sides gives you y = x + 4 
which is the inverse function: f  

–1 (x) = x + 4
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Inverse Functions

Also note that the functions f and f  

–1 have the effect of 
“undoing” each other. In other words, when you form the 
composition of f with f  

–1 or the composition of with you 
obtain the identity function.

f  (f –1(x)) = f  (x – 4) = (x – 4) + 4 = x

f  –1(f (x)) = f –1
 (x + 4) = (x + 4) – 4 = x
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Example 1 – Finding Inverse Functions Informally

Find the inverse function of f (x) = 4x. Then verify that both 
f (f  –1(x)) and f –1

 (f (x)) are equal to the identity function.

Solution:
The function multiplies each input by 4. To “undo” this 
function, you need to divide each input by 4. So, the 
inverse function of f (x) = 4 is given by
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You can verify that both f (f –1(x)) and f –1(f (x)) are equal to 
the identity function as follows. 

Example 1 – Solution cont’d
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Inverse Functions

If the function g is the inverse function of the function f then
it must also be true that the function f is the inverse function
of the function g. For this reason, you can say that the 
functions f and g are inverse functions of each other.
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The Graph of an Inverse Function
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The Graph of an Inverse Function

The graphs of a function and its inverse function f –1 are 
related to each other in the following way. If the point (a, b)
lies on the graph of then the point (b, a) must lie on the  
graph of f –1 and vice versa. 

This means that the graph of
f –1 is a reflection of the graph 
of f in the line y = x .

Figure 1.57
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Example 5 – Verifying Inverse Functions Graphically

Verify that the functions f and g are inverse functions of 
each other graphically.

Solution:
From Figure 1.58, you can 
conclude that f and g are 
inverse functions of each
other.

Figure 1.58
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The Existence of an Inverse Function
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The Existence of an Inverse Function

To have an inverse function, a function must be            one-
to-one, which means that each x-value has only one y-
value and each y-value has only one x-value.
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The Existence of an Inverse Function

From figure 1.61, it is easy to tell whether a function of x is 
one-to-one. Simply check to see that every horizontal line 
intersects the graph of the function at most once. This is 
called the Horizontal Line Test.

f (x) = x2 is not one-to-one.
Figure 1.61
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The Existence of an Inverse Function

Two special types of functions that pass the Horizontal Line
Test are those that are increasing or decreasing on their 
entire domains.

1. If f is increasing on its entire domain, then f is one-to-
    one.

2. If f is decreasing on its entire domain, then f is 
    one-to-one. 
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Example 7 – Testing for One-to-One Functions

Is the function                        one-to-one?

Solution:
Let a and b be nonnegative real numbers with f  (a) = f  (b).

So, f  (a) = f (b) implies that a = b. You can conclude that is 
one-to-one and does have an inverse function.

Set f (a) = f (b).
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Example 7 – Testing for One-to-One Functions

You may also want to test by graphing.

If your graph passes the vertical line test and the horizontal
line test then it is a function which has an inverse. 
Therefore, it is a one-to-one function.
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Finding Inverse Functions Algebraically
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Finding Inverse Functions Algebraically

For simple functions, you can find inverse functions by 
inspection. For more complicated functions, however, it is 
best to use the following guidelines.
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Example 8 – Finding an Inverse Function Algebraically

Find the inverse function of

Solution:
The graph of f in Figure 1.63 passes the 
Horizontal Line Test. So, you know that f 
is one-to-one and has an inverse function.

Write original function.

Replace f (x) by y.

Interchange x and y.

Multiply each side by 2.

Figure 1.63
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The domains and ranges of f and f –1consist of all real 
numbers. Verify that f (f  –1(x)) = x and f –1

 (f (x)) = x.

Example 8 – Solution cont’d

Solve for y.

Replace y by f 
–1(x)

Isolate the y-term.


