

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Add, subtract, multiply, and divide functions.
- Find compositions of one function with another function.
- Use combinations of functions to model and solve real-life problems.

Arithmetic Combinations of Functions

Just as two real numbers can be combined by the operations of addition, subtraction, multiplication, and division to form other real numbers, two *functions* can be combined to create new functions. When

$$f(x) = 2x - 3$$
 and $g(x) = x^2 - 1$

you can form the sum, difference, product, and quotient of *f* and *g* as follows.

Arithmetic Combinations of Functions

$$f(x) + g(x) = (2x - 3) + (x^2 - 1)$$

Sum

$$= x^{2} + 2x - 4$$

$$f(x) - g(x) = (2x - 3) - (x^2 - 1)$$

Difference

$$=-x^{2}+2x-2$$

$$f(x) \cdot g(x) = (2x - 3)(x^2 - 1)$$

Product

$$= 2x^3 - 3x^2 - 2x + 3$$

$$\frac{f(x)}{g(x)} = \frac{2x - 3}{x^2 - 1}, \quad x \neq \pm 1$$

The domain of an **arithmetic combination** of functions *f* and *g* consists of all real numbers that are common to the domains of *f* and *g*. In the case of the quotient

 $\frac{f(x)}{g(x)}$

there is the further restriction that $g(x) \neq 0$.

Example 1 – Finding the Sum of Two Functions

Given f(x) = 2x + 1 and $g(x) = x^2 + 2x - 1$, find (f + g)(x). Then evaluate the sum when x = 2.

Solution: (f + g)(x) = f(x) + g(x) $= (2x + 1) + (x^2 + 2x - 1)$ $= x^2 + 4x$

When x = 2, the value of this sum is $(f + g)(2) = 2^2 + 4(2)$ = 12

Compositions of Functions

Another way of combining two functions is to form the **composition** of one with the other.

For instance, when $f(x) = x^2$ and g(x) = x + 1, the composition of *f* with *g* is

$$f(g(x)) = f(x + 1)$$

= (x + 1)².

This composition is denoted as $f \circ g$ and is read as "*f* composed with *g*".

Compositions of Functions

Definition of Composition of Two Functions

The **composition** of the function f with the function g is

 $(f \circ g)(x) = f(g(x)).$

The domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f. (See Figure 1.50.)

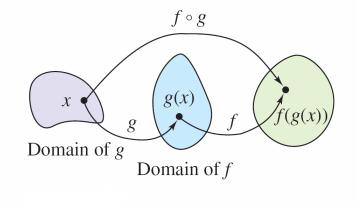


Figure 1.50

Find $(f \circ g)(x)$ for $f(x) = \sqrt{x}, x \ge 0$, and $g(x) = x - 1, x \ge 1$. If possible, find $(f \circ g)(2)$ and $(f \circ g)(0)$.

Solution: The composition of *f* with *g* is

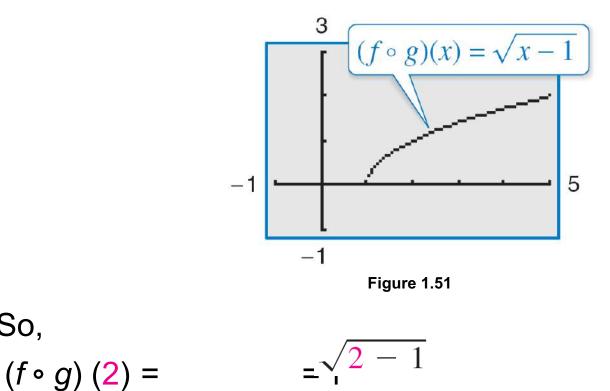
 $(f \circ g)(x) = f(g(x))$ Definition of $f \circ g$

= f(x - 1) Definition of g(x)

 $=\sqrt{x-1}, x \ge 1.$ Definition of f(x)

So,

The domain of $f \circ g$ is $[1, \infty)$ (See Figure 1.51).



is defined, but $(f \circ g)(0)$ is not defined because 0 is not in the domain of $f \circ g$.

Example 10 – Bacteria Count

The number *N* of bacteria in a refrigerated petri dish is given by

 $N(T) = 20T^2 - 80T + 500, 2 \le T \le 14$

where T is the temperature of the petri dish (in degrees Celsius). When the petri dish is removed from refrigeration, the temperature of the petri dish is given by

 $T(t) = 4t + 2, \quad 0 \le t \le 3$

where *t* is the time (in hours).

a. Find the composition N(T(t)) and interpret its meaning in context.

Example 10 – Bacteria Count

- **b.** Find the number of bacteria in the petri dish when *t* = 2 hours.
- c. Find the time when the bacteria count reaches 2000.

Solution: **a.** $N(T(t)) = 20(4t + 2)^2 - 80(4t + 2) + 500$ $= 20(16t^2 + 16t + 4) - 320t - 160 + 500$ $= 320t^2 + 320t + 80 - 320t - 160 + 500$ $= 320t^2 + 500$

The composite function N(T(t)) represents the number of bacteria as a function of the amount of time the petri dish has been out of refrigeration.

Example 10 – Solution

b. When t = 2 the number of bacteria is

- $N = 320(2)^2 + 420$
- = 1280 + 420
 - = 1700.
- **c.** The bacteria count will reach N = 2000 when $320t^2 + 420 = 2000$.

You can solve this equation for *t* algebraically as follows. $320t^2 + 420 = 2000$

$$320t^2 = 1580$$

Example 10 – Solution

70

$$t^{2} = \frac{79}{16}$$
$$t = \frac{\sqrt{79}}{4} \qquad t \approx 2.22 \text{ hours}$$

So, the count will reach 2000 when $t \approx 2.22$ hours. Note that the negative value is rejected because it is not in the domain of the composite function.

To confirm your solution, graph the equation $N = 320t^2 + 420$ as shown in Figure 1.54. Then use the *zoom* and *trace* features to approximate N = 2000 when $t \approx 2.22$ as shown in Figure 1.55.

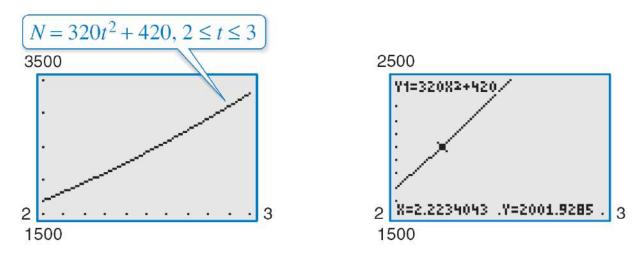


Figure 1.54

