Name:_____

Period_____

Percent Composition: The percentage by mass of each element in a compound.

Example Calculate the mass of each element in potassium carbonate, K₂CO₃.

First calculate the molar mass for K_2CO_3 . Find the atomic mass of each element from the periodic table. Multiply it by the number of times it appears in the formula and add up the total.

2 Potassium atoms	К	2 x 39.10g	=	78.20g K
1 carbon atom	С	1 x 12.01g	=	12.01g C
3 Oxygen atoms	0	3 x 16.00g	=	48.00g O
				138.21g K ₂ CO ₃

To find the percent of each element divide the part of the mass that pertains to that element with the total mass

Percent of Potassium	К =	78.20g K 138.21g K ₂ CO ₃	- X 100	=	56.58 % K
Percent of Carbon	C =	12.01g C 138.21g K ₂ CO ₃	- X 100	=	8.69 % C
Percent of Oxygen	0 =	48.00g O 138.21g K ₂ CO ₃	- X 100	=	34.73 % O

Percent Composition Calculations

Using the example above, calculate the percentage composition of each element in the formulas shown below. Show your work and circle your answers.

1. Magnesium carbonate MgCO₃

2. Sulfuric Acid H₂SO₄

3. Sodium Nitrate NaNO₃

4. Ammonium Sulfate (NH₄)₂SO₄

Hydrated Crystals:

Crystalline compounds that retain water during evaporation are referred to as being **hydrated** or are said to contain water of hydration. The ratio of moles of water to moles of compound is a small whole number. The formula for the hydrated compound barium chloride is:

$BaCl_2 \cdot 2H_2O$

The dot shows that for every one formula unit of BaCl₂ there are two molecules of water. The amount of water in a hydrate can be determined experimentally by heating the compound and driving the water off. The compound with the water removed is known as <u>anhydrous</u>.

5. Typical calculations are % water, % salt, and % of each ion. Find each of these for the above hydrated salt.

% H₂O =

%Salt =

%Ba⁺² ions =

% Cl^{-1} ions =

Use percent as a conversion factor

Finally, %'s of each component of a compound can be used to calculate the mass of one piece within a certain sample of a compound. For example CaF_2 is approximately 50% Calcium ions. If you had 2 grams of calcium fluoride, about 1 gram would be calcium and about 1 gram would be fluoride ions since they each make up about ½ of the compound by mass. To show work we would multiply by the % of each ion by the total mass.

6. Exactly how many grams of fluorine are in 0.45 g of Calcium fluoride? Use % composition as a conversion factor.

7. How many grams of hydrogen are in 1.27 g of iron (III) hydroxide?