AP Chemistry Timeline

Content Area:	Science
Course(s):	
Time Period:	36 Weeks
Length:	180 days
Status:	Published

Mandated Course of Study/Topical Outline with Timeline

Unit 01. Atomic Structure and Properties	 Topic Moles and Molar Mass Mass Spectroscopy of Elements Elemental Composition of Pure Substances Composition of Mixtures Atomic Structure and Electron Configuration Photoelectron Spectroscopy Periodic Trends Valence Electrons and Ionic Compounds 	Days 15
02. Molecular and Ionic Compound Structure and Properties	 Types of Chemical Bonds Intramolecular Force and Potential Energy Structure of Ionic Solids Structure of Metals and Alloys Lewis Diagrams Resonance and Formal Charge VSEPR and Bond Hybridization 	15
03. Intermolecular Forces and Properties	 Intermolecular Forces Properties of Solids Solids, Liquids, and Gases Ideal Gas Law Kinetic Molecular Theory 	22

	 Deviation from Ideal Gas Law Solutions and Mixtures Representations of Solutions Separation of Solutions and Mixtures Chromatography Solubility Spectroscopy and Electromagnetic Spectrum Photoelectric Effect Beer-Lambert Law 	
04. Chemical Reactions	 Introduction for Reactions Net Ionic Equations Representations of Reactions Physical and Chemical Changes Stoichiometry Introduction to Titration Types of Chemical Reactions Introduction to Acid- Base Reactions Oxidation-Reduction (Redox) Reactions 	20
05. Kinetics	 Reaction Rates Introduction to Rate Laws Concentration Changes Over Time Elementary Reactions Collision Model Reaction Energy Profile Introduction to Reaction Mechanisms Reaction Mechanism and Rate Law Steady-State Approximation Multistep Reaction 	19

	Energy Profile Catalysis 	
06. Thermodynamics	 Endothermic and Exothermic Processes Energy Diagrams Heat Transfer and Thermal Equilibrium Heat Capacity and Calorimetry Energy and Phase Changes Introduction to Enthalpy of Reaction Bond Enthalpies Enthalpy of Formation Hess's Law 	18
07. Equilibrium	 Introduction to Equilibrium Direction for Reversible Reactions Reaction Quotient and Equilibrium Constant Calculating the Equilibrium Constant Properties of the Equilibrium Constant Calculation Equilibrium Concentrations Representations of Equilibrium Introduction to LeChâtelier's Principle Reaction Quotient and Le Châtelier's Principle Introduction to Solubility Equilibria Common-Ion Effect pH and Solubility Free Energy of Dissolution 	21
08. Acids and Bases	 Introduction to Acids and Bases pH and pOH of Strong Acids and Bases Weak Acid and Base 	17

	 Equilibria Acid-Base Reactions and Buffers Acid-Base Titrations Molecular Structure of Acids and Bases pH and pK_a Properties of Buffers Henderson-Hasselbalch Equation Buffer Capacity 	
09. Applications of Thermodynamics	 Introduction to Entropy Absolute Entropy and Entropy Change Gibbs Free Energy and Thermodynamic Favorability Thermodynamic and Kinetic Control Free Energy and Equilibrium Coupled Reactions Galvanic (Voltaic) and Electrolytic Cells Cell Potential and Free Energy Cell Potential Under Nonstandard Conditions Electrolysis and Faraday's Law 	16
Review or AP Exam	 Review Concepts Lab Analysis Tips Test Taking Tips Practice Exams 	17

Optional Course of Study/Topical Outline with Timeline

Unit	Торіс	Days