13 • Gaseous Equilibrium

- Consider the reaction system, 1. CoO(s) + H2(g) Co(s) + H2O(g).The equilibrium constant expression is $[CoO][H_2]$ $[H_2]$ (H_2O) $[Co][H_2O]$ a) [Co][H₂O] [H,O]b) [CoO][H₂] $[H_2]$ e) [Co][H₂O] $[H_2]$ c)
- 2. Given the equilibrium,

 $2SO_2(g) + O_2(g) 2SO_3(g)$, if this equilibrium is established by beginning with equal number of moles of SO₂ and O₂ in a 1.0 Liter bulb, then the following *must* be true at equilibrium:

- a) [SO2] = [SO3] d) [SO2] < [O2]
- b) $2[SO_2] = 2[SO_3] e) [SO_2] > [O_2]$
- c) [SO2] = [O2]

Questions 3 & 4 refer to the following:

At a given temperature, 0.300 mole NO, 0.200 mol Cl2 and 0.500 mol ClNO were placed in a 25.0 Liter container. The following equilibrium is established: 2CINO(g) 2NO(g) + Cl2(g)

- At equilibrium, 0.600 mol of ClNO was present. The number of *moles* of Cl2 present at equilibrium is
 - a) 0.050 d) 0.200
 - b) 0.100 e) 0.250
 - c) 0.150

Name					
Period	 Date	/	/	/	

PRACTICE TEST

- 4. The equilibrium constant, Kc, is:
 - a) 4.45 x 10⁻⁴ d) 0.167
 - b) 6.67 x 10⁻⁴ e) 1500
 - c) 0.111
- 5. At 985°C, the equilibrium constant for the reaction,

 $H_2(g) + CO_2(g) H_2O(g) + CO(g)$

is 1.63. What is the equilibrium constant for the reverse reaction?

a)	1.63	d)	0.613
b)	0.815	e)	1.00

c) 2.66

 What is the relationship between Kp and Kc for the reaction, 2ICl(g) I2(g) + Cl2(g)?

- a) $Kp = Kc(RT)^{-1}$ d) Kp = Kc
- b) Kp = Kc(RT) e) Kp = Kc(2RT)
- c) $Kp = Kc(RT)^2$
- For the reaction 2NO2(g) N2O4(g), Kp at 25°C is
 7.3, when all partial pressures are expressed in atmospheres. What is Kc for this reaction?
 [R=0.0821 L·atm·mol⁻¹·K⁻¹]
 - a) 4270 d) 179
 - b) 0.0119 e) 2.06
 - c) 0.291

8. 0.200 mol NO is placed in a one liter flask at 2273 K. After equilibrium is attained, 0.0863 mol N2 and 0.0863 mol O2 are present. What is K_c for this reaction?

 $2NO(g) N_2(g) + O_2(g)$

- d) 39.7 a) 9.92
- b) 3.15 e) 0.576
- c) 0.0372

9. N2O4(g) 2 NO2(g)

mol of N2O4 and 0.02 mole of NO2. At 90°C, 0.11 mole of N2O4 forms 0.050 mole of N2O4 and 0.12 mole of NO2. From these data we can conclude

- a) N2O4 molecules react by a second order rate law.
- b) N2O4 molecules react by a first order rate law.
- c) the reaction is exothermic.
- d) N2O4 molecules react faster at 25°C than at 90°C.
- e) the equilibrium constant for the reaction above increases with an increase in temperature.

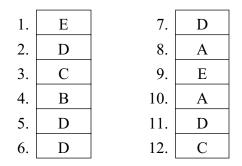
10. For the equilibrium system

$$H2O(g) + CO(g) H2(g) + CO2(g)$$
$$\Delta H = -42 \text{ kJ/mol}$$

Kc equals 0.62 at 1260 K. If 0.10 mole each of H2O, CO, H2 and CO2 (each at 1260 K) were placed in a 1.0-Liter flask at 1260 K, when the system came to equilibrium...

	The temperature	The mass of CO	
	would	would	
a)	decrease	increase	
b)	decrease	decrease	
c)	remain constant	increase	
d)	increase	decrease	
e)	increase	increase	

11. For the reaction system,


 $N_2(g) + 3H_2(g) + 2NH_3(g) + heat$ the conditions that would favor maximum conversion of the reactants to products would be

- a) high temperature and high pressure
- b) high temperature, pressure unimportant
- c) high temperature and low pressure
- d) low temperature and high pressure
- e) low temperature and low pressure
- At 25°C, 0.11 mole of N2O4 reacts to form 0.10 12. Solid HgO, liquid Hg, and gaseous O2 are placed in a glass bulb and are allowed to reach equilibrium at a given temperature.

 $2 HgO(s) 2 Hg(l) + O2(g) \Delta H = +43.4 \text{ kcal}$ The mass of HgO in the bulb could be increased by

- a) adding more Hg.
- b) removing some O2.
- c) reducing the volume of the bulb.
- d) increasing the temperature.
- e) removing some Hg.

Answers:

Answers: 1E 2D 3C 4B 5D 6D 7D 8A 9E 10A 11D 12C