Name _____ Period

Pre-Test #14 The Chemistry of Acids & Bases

Bronsted-Lowrey & pH

- 1. For the following aqueous equilibria, designate the Brønsted-Lowry conjugate acid-base pairs and circle the stronger base:
 - a. $\mathrm{NH}_3(aq) + \mathrm{H}_2\mathrm{O}(l) \rightleftharpoons \mathrm{NH}_4^+(aq) + \mathrm{OH}^-(aq)$
 - b. $HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$
 - c. $\text{NH}_4^+(aq) + \text{CO}_3^{2-}(aq) \rightleftharpoons \text{NH}_3(aq) + \text{HCO}_3^-(aq)$
- 2. Write the name and formula for the conjugate bases of the following:
 - a. HNO_2 c. HF
 - b. H_2SO_4 d. $H_2PO_4^-$
- 3. Complete the Brønsted-Lowry equilibria, label the components acid or base, and pair up the conjugate acid-base pairs:
 - a. $HSO_4^- + H_2O \rightleftharpoons$
 - b. $NH_3 + H_2O \rightleftharpoons$
 - c. $CN^- + H_2O \rightleftharpoons$
 - d. $HClO_4 + H_2O \rightleftharpoons$ -
- 4. Using the following Ka values, indicate the correct order of base strength. HCl: Ka very large, HNO₂: Ka= 4.0 x 10⁻⁴, HF: Ka = 7.2 x 10⁻⁴, HCN: Ka = 6.2 x 10⁻¹⁰, H₂O: Kw = 1.0 x 10⁻¹⁴ a. $CN^{-} > NO_{2}^{-} > F^{-} > H_{2}O > Cl^{-}$ b. $Cl^{-} > H_{2}O > F^{-} > NO_{2}^{-} > CN^{-}$ c. $CN^{-} > F^{-} > NO_{2}^{-} > Cl^{-} > H_{2}O$ d. $H_{2}O > CN^{-} > NO_{2} > F^{-} > Cl^{-}$
- 5. Of the following acids, determine...(some are used more than once and others not at all)
 - a. The strongest acid
 - b. The acid that produces the lowest concentration of hydronium ions per mole of acid
 - c. The acid with the strongest conjugate base
 - d. The diprotic acid
 - e. The 2nd strongest acid
 - f. The acid with the weakest conjugate base

$$\begin{split} & \text{HNO}_{3}(aq) + \text{H}_{2}\text{O}(l) \rightleftharpoons \text{H}_{3}\text{O}^{+}(aq) + \text{NO}_{3}^{-}(aq) & \text{K}_{a} = \text{very large} \\ & \text{HSO}_{4}^{-}(aq) + \text{H}_{2}\text{O}(l) \rightleftharpoons \text{H}_{3}\text{O}^{+}(aq) + \text{SO}_{4}^{2-}(aq) & \text{K}_{a} = 1.2 \text{ x } 10^{-2} \\ & \text{HCN}(aq) + \text{H}_{2}\text{O}(l) \rightleftharpoons \text{H}_{3}\text{O}^{+}(aq) + \text{CN}^{-}(aq) & \text{K}_{a} = 4.0 \text{ x } 10^{-10} \\ & \text{H}_{2}\text{CO}_{3}(aq) + \text{H}_{2}\text{O}(l) \rightleftharpoons \text{H}_{3}\text{O}^{+}(aq) + \text{HCO}_{3}^{-}(aq) & \text{K}_{a} = 4.2 \text{ x } 10^{-7} \\ & \text{NH}_{4}^{+}(aq) + \text{H}_{2}\text{O}(l) \rightleftharpoons \text{H}_{3}\text{O}^{+}(aq) + \text{NH}_{3}(aq) & \text{K}_{a} = 5.6 \text{ x } 10^{-10} \\ & \text{HF}(aq) + \text{H}_{2}\text{O}(l) \rightleftharpoons \text{H}_{3}\text{O}^{+}(aq) + \text{F}^{-}(aq) & \text{K}_{a} = 7.2 \text{ x } 10^{-4} \end{split}$$

6. The pKa of HOCl is 7.5. Calculate the pH of a 0.31 M solution of HOCl. a. 7.50 b. 6.50 c. 4.00 d. 10.00

- 7. Write net ionic for the complete neutralization of the acid-base reactions for:
 - a. The reaction of acetic acid with aqueous ammonia solution
 - b. The reaction of hydrofluoric acid with sodium hydroxide
 - c. The reaction of ammonium chloride with potassium hydroxide
 - d. The reaction of sodium bicarbonate with sulfuric acid
 - e. The reaction of chlorous acid with aqueous ammonia solution
- 8. What is the pH of a solution that contains 2.60 grams of NaOH in 250 mL of aqueous solution?
- 9. A 0.12 M solution of an unknown weak acid has a pH of 4.26 at 25°C. What is the hydronium ion concentration in the solution and what is the value of its K_a?
- 10. Hydroxylamine (NH₂OH) is a weak base with a $K_b = 6.6 \times 10^{-9}$. What is the pH of a 0.36 M solution of hydroxylamine in water at 25°C?
- 11. Which of the following salts, when dissolved in water to produce 0.10 M solutions, would have the lowest pH?
 - a. sodium acetate c. magnesium nitrate
 - b. potassium chloride d. potassium cyanide e. sodium bisulfate
- 12. For each of the following salts, predict whether an aqueous solution would be acidic, basic, or neutral.
 - a. sodium nitrate NaNO₃
 - b. ammonium iodide NH₄I
 - c. ammonium cyanide NH₄CN (NH₄⁺ Ka = 5.6 x 10^{-10} , CN⁻ Kb = 1.6 x 10^{-5})
 - d. sodium hypochlorite NaOCl
- 13. A solution of 8.01 M Formic acid (HCOOH) is 0.47% ionized. What is the Ka value of formic acid? a. 3.8×10^{-2} b. 1.8×10^{-4} c. 4.7×10^{-3} d. 3.8
- 14. Calculate the pOH of a 0.32 M solution of Ba(OH)₂ a. 0.49 b. 0.19 c. 13.81 d. 13.51
- 15. Calculate the pH of a 0.35 M solution of potassium cyanide. K_a for HCN = 4.0 x10⁻¹⁰.
- 16. Calculate the pH of the following aqueous solution: 0.39 M NH₄Cl (pKb for NH₃ = 4.74) a. 9.17 b. 4.83 c. 9.67 d. 4.33