

Nuclear Chemistry

Radiation

Background – Atomic Structure

Background

Examples:

Chemical Equations

Basic formula:
 aA + bB → cC + dD

• Example: Na + Cl₂ \rightarrow 2NaCl

Nuclear Equations

In nuclear equations, we balance

- atomic number
- mass number

Nuclear Equations

• Example:

Nuclear Reactions

- Chemical Reactions = bonds forming and breaking
- Nuclear reactions = when the nuclei emit particles and/or rays

Power of Radiation

- Alpha radiation is least penetrating and can penetrate the outer layer of skin. Alpha radiation is stopped by a sheet of paper.
- Beta radiation can penetrate through a few cm of skin and tissue. Beta radiation is stopped by a sheet of aluminum foil.
- Gamma radiation will pass right through a body. Gamma radiation requires several cm of lead to stop.

- I. Alpha = $\frac{4}{2}\alpha$
- Example:
 - What is the equation when radon 222 undergoes alpha decay?

$$\mathbf{R}^{222}_{\mathbf{R}} \rightarrow \alpha^{4}_{2} + \mathbf{R}^{218}_{\mathbf{R}}$$

- **II.** Beta = ${}^{0}_{-1}\beta$ or ${}^{0}_{-1}e$
- Example:
 - Write the equation for hydrogen 3 undergoing beta decay.

$$H_1^3 \rightarrow \beta_{-1}^0 + H_2^3$$

- II. Beta (continued)
 - **<u>A. Positron</u>**: A positron is a particle equal in mass to an electron but with opposite charge. $\Box_{+1}^{0}\beta \text{ or }_{+1}e$
- Example:
- ★ Fluorine 18 emits a positron when it decays.
 F → $\frac{18}{9}$ β + $\frac{18}{Ne}$

- III. Gamma = ${}^{0}_{0}\gamma$
- Example
 - Uranium 238 emits an alpha particle and gamma rays when it decays.

$$U \xrightarrow{238} \gamma + {}^{0}_{0} U \xrightarrow{238} {}^{238}_{92}$$

TABLE 4.4 Nuclear Symbols for Subatomic Particles

Symbols	Nuclear Symbols
р	$^{1}_{1}$ p or $^{1}_{1}$ H
n	$_{0}^{1}n$
e^{-} or β	$_{-1}^{0}e \text{ or } _{-1}^{0}\beta$
e^+ or β^+	$^{0}_{+1}{\rm e} {\rm ~or} ~^{0}_{+1}m{eta}$
α	${}_{2}^{4}$ He or ${}_{2}^{4}\alpha$
β or β^-	$_{-1}^{0}e \text{ or } _{-1}^{0}\beta$
γ	${}^{0}_{0}\gamma$
	Symbolspn e^- or β e^+ or β^+ α β or $\beta^ \gamma$

Copyright © 2007 Pearson Prentice Hall, Inc.

Practice

1) Plutonium-239 emits an alpha particle when it decays.

$$\begin{array}{ccc}
239 \\
94 \\
\end{array} \longrightarrow \begin{array}{c}
4 \\
2 \\
4 \\
92 \\
\end{array} + \begin{array}{c}
235 \\
92 \\
92 \\
\end{array}$$

2) Protactinium-234 undergoes beta decay.

$$\begin{array}{ccc}
234 P_{a} \longrightarrow & OB + 234 \\
91 P_{a} \longrightarrow & -1P + 92 \\
\end{array}$$

3) Carbon-11 emits a positron when it decays.

 $C \rightarrow + i P + 5 P$

4) Carbon-11 undergoes electron capture.

 $\int_{C}^{H} C + \int_{C}^{0} e \rightarrow \int_{5}^{H} B$

5) Radium-226 decays by alpha emission. $226 R_{a} \rightarrow \frac{4}{2} + \frac{222}{86} R_{n}$ $\frac{78}{88} = \frac{1}{8} + \frac{1}{8} +$

6) Sodium-24 undergoes beta decay.

 $\frac{24}{11}Na \longrightarrow \frac{0}{-1}B + \frac{24}{12}Mg$

8) Gold-188 decays by positron emission.

 $\frac{188}{79}AU \longrightarrow {}^{0}B + \frac{188}{78}P + \frac{1$

Half-Life

Half-life of a radioactive sample is the time required for ½ of the material to undergo radioactive decay.

Half-Life

Copyright © 2007 Pearson Prentice Hall, Inc.

Half-Life

 If gallium – 68 has a half-life of 68.3 minutes, how much of a 160.0 mg sample is left after 1 half life?

2 half lives?

3 half lives?

$$[60.0mg \times 0.5^3 = 20.00mg]$$

2. The half life of I-123 is 13 hr. How much of a 64 mg sample of I-123 is left after 39 hours?

n = 39/13 = 3 $64mg \times 0.5^3 = [8.0mg]$

3. Cobalt – 60, with a half-life of 5 years, is used in cancer radiation treatments. If a hospital purchases a supply of 30.0 g, how much would be left after 15 years? $n = \frac{15}{5} = \frac{3}{5}$ half lives

$$30.0g \times 0.5^3 = 3.75g$$

4. Iron-59 is used in medicine to diagnose blood circulation disorders. The half-life of iron-59 is 44.5 days. How much of a 2.000 mg sample will remain after 133.5 days? n = [33.5/44.5] = 3 half lives

$$2.000 \text{ mg} \times 0.5^3 = 10.2500 \text{ mg}$$

- 5. The half-life of polonium-218 is 3.0 minutes. If you start with 20.0 g, how long will it take before only 1.25 g remains?
- $\begin{array}{ll} \text{hulflives} & 20.0g/2 = & N = 4 \text{ half lives} \\ 1 & [10.0g \\ 2 & 5.0g \\ 3 & [2.5g \\ 4 & [1.25g \\ \end{array} \end{array} \right. \begin{array}{ll} \text{Half lives } \times 3.0 \text{ min} = \\ 1 & [12 \text{ minutes} \\ \end{array}$

 A sample initially contains 150.0 mg of radon-222. After 11.4 days, the sample contains 18.75 mg of radon-222. Calculate the half-life.

h= 3 half lives 1 [150.0 mg/2 = 75.0 mg 2 [37.5 mg 3 [18.71 5 mg 3 halflives = <u>11.4 days</u> Length of brafflife halflife = 3.8 days