Moles

What is Molar Mass?

Molar mass is the weight of one mole (or 6.02 x 10²³ molecules) of any chemical

compounds.

(2 Atoms x 1.008) + (1 Atom x 15.999) Molar Mass=18.015 g/mol

- Find the molar mass of ...
 - 1. NaCl
 - 2. Mg
 - 3. PO₄
 - 4. Mg₃(PO₄)₂

Example Problems

- Find the molar mass of ...
 - 1. NaCl = 22.98 + 35.35 = <u>58.48 g/mole</u>
 - 2. Mg = <u>24.30 g/mole</u>
 - 3. $PO_4 = 30.97 + (4 \times 15.99) = 94.93 \text{ g/mole}$
 - 4. $Mg_3(PO_4)_2 =$ (3 x 24.30) + (2 x 30.97) + (8 x 15.99) = 262.76 g/mole

Changing moles into grams

- Many calculations need to use moles, but you cannot measure out moles directly in a lab. Instead we need to use grams.
- This is why it is important to know how to convert moles into grams.

- Let's look at a shopping problem.
 - 1 video game costs \$24.30. If you want to buy 3 video games, how much will it cost?

• Let's look at a chemistry problem.

1 mole of Mg weighs <u>24.30 g</u>. If you want 3 moles of Mg, how much will it weigh?

- Let's look at another shopping problem.
 - 1 dress costs \$30.97. 1 bracelet costs 15.99. If 3 sisters want to wear 1 dress with 4 bracelets, what is the sisters' total bill?

Each sister = (1 dress x \$30.97) + (4 brac x \$15.99) = \$94.93

- Let's look at another chemistry problem.
 - 1 mole of P weighs 30.97g. 1 mole of O weighs 15.99 g. If there are 3 moles of (phosphate) PO₄, what is the total mass?

$$PO_4 = (1 P \times 30.97g) + (4 O \times 15.99g) = 94.93g$$

$\mathsf{Grams} \rightarrow \mathsf{Moles}$

- Let's look at a shopping problem.
 - 1 video game costs \$24.30. If you have \$97.40 how many video games can you buy?

\$97.40	1 video game	= 4 video games
	\$24.30	

$\mathsf{Grams} \rightarrow \mathsf{Moles}$

- Let's look at a chemistry problem.
 - 1 mole of Mg weighs <u>24.30 g</u>. If you want 97.2 grams of Mg, how many moles do you have?

97.2 g Mg 1 mole = 4 moles 24.30 g Mg

 Sally needs to measure out 4 moles of CaCl₂ (calcium chloride). How many grams will she measure?

 Susie needs to calculate how many moles are in 5.7 grams of C₁₂H₂₂O₁₁

Grams \rightarrow Moles or Moles \rightarrow Grams

 Sally needs to measure out 4 moles of CaCl₂ (calcium chloride). How many grams will she measure?

*443.92 grams

 Susie needs to calculate how many moles are in 5.7 grams of C₁₂H₂₂O₁₁
 \$0.0167 moles

Teeny Tiny Things!

• Farmers always box eggs in groups of 12, and we call that a dozen.

✤If we have 3 dozen then

<u>3 dozen</u> 12 eggs = 36 eggs 1 dozen

✤If we have 50 eggs then

50 eggs 1 dozen = 4.16 dozen 12 eggs

Teeny Tiny Things!

 Avagadro's determined that 1 mole is equal to 6.02×10^{23} atoms. ✤If we have 3 moles then 3 moles 6.02×10^{23} atoms = 1.806 x 10²⁴ atoms 1 mole ✤If we have 50,000,000,000 atoms then 5 x 10¹⁰ atoms 1 mole = 8×10^{-14} moles 6.02 x 10²³ atoms

 How many atoms are present in 5 moles of H₂O?

• How many moles are in 3.61 x 10²⁴ molecules?

Teeny Tiny Things!

How many atoms are present in 5 moles of H₂O?
 3.01 x 10²⁴ atoms

How many moles are in 3.61 x 10²⁴ molecules?
 *6 moles

Moles \rightarrow Volume

 Avagadro determined that 1.00 mole of any gas at STP has a volume of 22.4 Liters.

Volume

- Basically,
 22.4 L of any gas is equal to 1 mole.
 - 1 mole of Neon gas (Ne) = 22.4 L
 1 mole of hydrogen gas (H₂) = 22.4 L
 1 mole of water vapor (H₂O) = 22.4 L

See the pattern???

Moles \rightarrow Volume

• What is the volume of 3 moles of H₂ gas?

Volume \rightarrow Moles

• How many moles are in 11.2 L of H₂ gas?

You can follow the road to do multiple step problems

You can follow the road to do multiple step problems

• George needs to know the volume of 2.5 grams of helium gas.

• Timmy has 78.4 L of Ne gas, how many atoms does he have?

George needs to know the volume of 2.5 grams of helium gas.
 \$14 Liters

 Timmy has 78.4 L of Ne gas, how many atoms does he have?

✤2.1 x 10²⁴ atoms

The ratio of Bread to Cheese is 2:1

So does that mean if you have 4 pieces of bread, how many slices of cheese will you need?

4 slices of bread	1 slice of cheese	= 2 cheese slices
	2 slices of bread	

Mole Ratio

• The Balanced chemical equation tells us the Mole Ratio of the compounds.

Watch this video:
 Mole to Mole Video

- Use this balanced equation to answer the following questions: <u>2NaN₃ → 2Na + 3N₂</u>
- If 5 moles of nitrogen are produced, how many moles of sodium nitride were decomposed?

 If 10.5 moles of sodium nitride were decomposed, how many moles of sodium were produced?

- Use this balanced equation to answer the following questions: <u>2NaN₃ → 2Na + 3N₂</u>
- If 5 moles of nitrogen are produced, how many moles of sodium nitride were decomposed?
 \$3.33 moles of NaN₃
- If 10.5 moles of sodium nitride were decomposed, how many moles of sodium were produced?
 - 10.5 moles of Na

$2B + 1C \rightarrow 1B_2C$

lf each	bread slice costs \$0.10, then if	
you we	re given \$4.00 worth of bread, how	
many bread slices do you have?		
\$4.00	1 bread slice = 40 bread slices	

\$0.10

The ratio of Bread to Cheese is 2:1

So does that mean if you spend \$4.00 on bread you have to spend \$2.00 on cheese?

If you have 40 slices of bread, how many slices of cheese do you need? The ratio of bread to cheese is 2 bread : 1 cheese.

40 bread	1 cheese	=	20 cheese slices
	2 bread		

If each cheese slice costs \$0.25, how much did you spend on cheese?

20 cheese	\$0.25 =	\$5.00
	1 cheese	_

So if you spend \$4.00 on bread you have to spend \$5.00 on cheese?

The point of the Cheese Sandwich problem is that you cannot use the ratio on \$money\$, you have to convert it to number of things (moles) in order to use the ratio and then convert back to the unit you were using.

$\mathsf{Gram} \rightarrow \mathsf{Gram}$

• Let's show the setup of the cheese sandwich problem all in one big step:

\$4.00 bread	1 bread slice	1 cheese slice	\$0.25 cheese =	\$5.00
	\$0.10 bread	2 bread slice	1 cheese slice	

$Gram \rightarrow Gram$

• Let's try a chemistry problem

If you have 10 grams of H₂, how many grams of O₂ will you need to complete the reaction?

10 grams H ₂	1 mole H ₂	1 mole O ₂ Ratio Step	1301.9181191395	= 79.16 g O ₂
	Madar 91/1ass	2 mole H ₂	1 mole O ₂	

$Gram \rightarrow Gram$

• Let's try another chemistry problem

If you have $20 \text{ grams of } O_2$, how many grams of H_2 will you need to complete the reaction?

20 grams O ₂ 1 mol	1 mole O ₂	2 mole H ₂ Ratio Step	N21002rgMalss =	= 2.53 g H ₂
	Madiat81\gaos	1 mole O ₂	1 mole H ₂	

- Use this balanced equation to answer the following questions: $2NaN_3 \rightarrow 2Na + 3N_2$
- If 28.0 grams of nitrogen are produced, how many grams of sodium nitride were decomposed?

• If 32.5 grams of sodium nitride were decomposed, how many grams of sodium were produced?

- Use this balanced equation to answer the following questions: $2NaN_3 \rightarrow 2Na + 3N_2$
- If 28.0 grams of nitrogen are produced, how many grams of sodium nitride were decomposed?

✤43.3 grams of NaN₃

 If 32.5 grams of sodium nitride were decomposed, how many grams of sodium were produced?
 \$11.5 grams Na

Concentration of Solutions

How would you compare the concentrations of these two cups of tea?

DII UTF

Expressing Concentration?

How do we express the concentration of solutions involving a solid solute and a liquid solvent?

Molarity

IMPORTANT DEFINITION

 For solutions with a solid solute and a liquid solvent:

Molarity (M) = moles of solute liters of **solution**

A practical problem?

 To prevent dehydration an IV of glucose and sodium chloride is administered to many hospital patients. 100 ml of IV solution contains 5.1 grams of Glucose (C₆H₁₂O₆). What is the molarity (M) of the solution?

Step 1

Make sure the units are correct to calculate molarity (M).

Hint: Moles and Liters

5.1 grams, 100 milliliters

Are the units correct?

Step 2

• Convert to the correct units.

1 mole $C_6H_{12}O_6 =$ _____ grams

Still.... Step 2

• How many liters in 100 mL?

100 mL = 0.1 L

King(Kilo) Henry (Hecto) Died (Deca) By (Base) Drinking (Deci) Chocolate (Centi) Milk (Milli)

Step 3:

Molarity (M) = <u>moles of solute</u> liters of **solution**

Molarity (M) = 0.028 moles $C_6H_{12}O_6$ 0.100 liters

= 0.28 M

Summarize Molarity

Step 1: Make sure the units are correct to calculate molarity (M).

Step 2: Convert to the correct units

Step 3: Molarity (M) = <u>moles of solute</u> liters of **solution**

Kool-Aid Lab

- 1. Using your assigned grams of Kool-Aid calculate the Molarity.
- 2. Use a clean weigh-boat to weigh the Kool-Aid
- 3. Add the Kool-Aid to the flask first and then fill to the line with water from the water fountain.
- 4. Arrange bottles at front of the room in order of increasing concentration.

Kool-Aid Lab Questions

- 1. On the Kool-Aid label the manufacturer recommends 0.24M. Calculate the grams of the recommended Kool-Aid concentration needed in 500 mL?
- 2. Which concentration tasted best to you?
- 3. How does it compare to the manufacturer's recommendation?
- 4. Complete the practice problems and glue them into this section

Molarity Calculations

- 1. 0.48M
- 2. 0.125M
- 3. 20 moles
- 4. 0.02 moles
- 5. 0.02 moles
- 6. 1.16 grams
- 7. 147 grams
- 8. 1.38 mL
- 9. 250 mL

Molarity= moles / Liters

Molarity = the moles of solute per Liter of solution.

Smaller volume = less moles of solute = same concentration

Molarity Review

Molarity = the amount of moles per Liter of solution.

Your koolaid solution contains 0.125 moles in 500 mL. What is the Molarity?

$$\begin{array}{ll} \text{moles} & X = 0.125 \text{ mol}\\ \text{Liters} & 0.5 \text{ L} \end{array}$$
$$X = 0.25 \text{ M}$$

Molarity Review

 Molarity = the amount of moles per Liter of solution.

> Your koolaid solution Molarity is 0.3M, how many L of solution do you need if you're using 0.2 moles of solute?

Molarity Review

Molarity = the amount of moles per Liter of solution.

Your koolaid solution Molarity is 0.3M, how many moles of solute do you need if you're solution totals 400mL?

Molarity: $M_1V_1 = M_2V_2$

Molarity = the amount of moles per Liter of solution.

More Volume = lower concentration

Molarity: $M_1V_1 = M_2V_2$

Joe wants to make 2 L of a 3M solution. What volume of a 5M solution does he need to add?

M₁ = 3M V₁ = 2L What=Variables/de you know?

```
(3) (2) = (5) (X)

6 = 5 (X)

\frac{6}{5} = X \qquad X = 1.2 L
```


 Alex wants to make 300 mL of a 0.5 M solution of HCI. How many moles of HCI will he need? (Hint: change mL into L)

 Molly made a 2 M solution of NaOH. If she used 0.25 moles of sodium hydroxide, what was the volume of her solution?

- Alex wants to make 300 mL of a 0.5 M solution of HCI. How many moles of HCI will he need? (Hint: change mL into L)
 \$0.15 moles HCI
- Molly made a 2 M solution of NaOH. If she used 0.25 moles of sodium hydroxide, what was the volume of her solution?
 \$0.125 L

Mole Conversions meets Molarity Problems

 Alex wants to make 300 mL of a 0.5 M solution of HCI. How many <u>GRAMS</u> of HCI will he need? (Hint: change mL into L)

Step 1: Solve for moles Step 2: Change moles into grams

$0.5M = X_{0.3 L}$	0.15 moles HCI	36.46 grams HCl = 5.47 g HCl
(0.5)(0.3) = X		1 mole HCI

0.15 moles = X

 Molly made a 2 M solution of NaOH. If she used 10 grams of sodium hydroxide (NaOH), what was the volume of her solution?

Step 1: Change grams into moles Step 2: solve for volume

 Molly made a 2 M solution of NaOH. If she used 10 grams of sodium hydroxide (NaOH), what was the volume of her solution?

Step 1: Change grams into moles Step 2: solve for volume

◆0.125 L