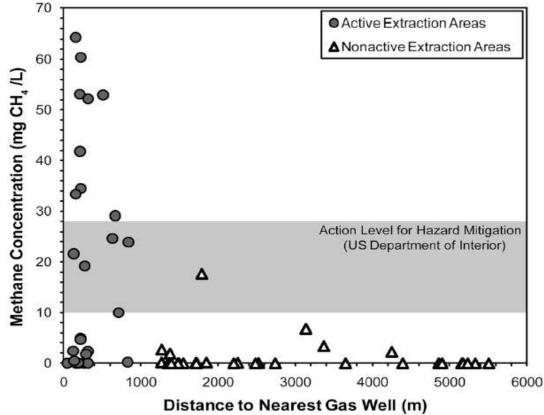

# Characterize groundwater quality in area engaged in unconventional drilling


#### Zacariah L. Hildenbrand, Ph.D. Inform Environmental, LLC, Dallas, TX 75227 The University of Texas at Arlington,

Arlington, TX 76019

#### Lots of opinion but is there any data?



"A MASTERPIECE

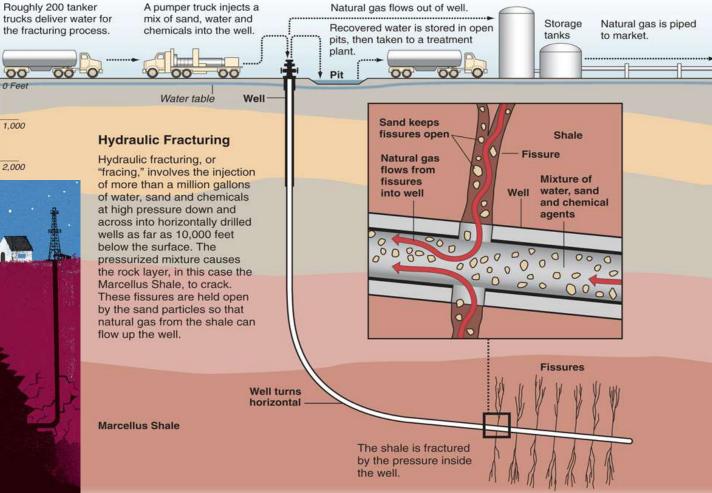


Elevated levels of methane

Geospatial relationship between methane concentration and distance to neighboring gas well

Evidence of deep thermogenic methane contamination

Osborn, S. G., et al. Proc. Natl. Acad. Sci. 2011, 108, 8172-8176.


#### What is unconventional drilling?

Hydraulic Fracturing

Shale Acidization

Underground Injection Wells (Waste disposal)

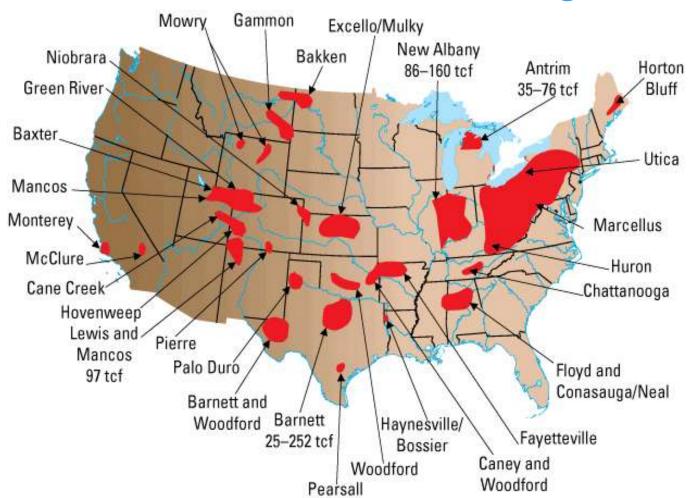
#### What is Hydraulic Fracturing?



2.000

1.000




#### What is unconventional drilling?

Hydraulic Fracturing

Shale Acidization

Underground Injection Wells (Waste disposal)

#### Where is this occurring?





### **Environmental Concerns**

#### Earthquakes

Cleburne, Irving, Azle, Dallas, OK, AR, Japan USGS has evidence that underground waste injection can cause small scale earthquakes

#### Surface water contamination

Waste pits, fluid spills, pipeline leaks Groundwater contamination Waste pits, faulty casings

Is there a hydrologic connection to deep fractures?







### **Environmental Concerns**

#### Earthquakes

Cleburne, Irving, Azle, Dallas, OK,AR, Japan USGS has evidence that underground waste injection can cause small scale earthquakes

#### Surface water contamination

Waste pits, fluid spills, pipeline leaks

#### Groundwater contamination

Waste pits, faulty casings

Is there a hydrologic connection to deep fractures?



### **Composition of Fracturing fluid**

#### Water (up to 99%, 3-5 million gallons per well) Chemical additives (up to 2%)\*

Biocides, surfactants, gelling agents, emulsifiers, corrosion inhibitors, BTEX compounds (benzene, toluene, ethylbenzene, xylene)

\*Exact recipe is proprietary to each company although information is available at www.fracfocus.org Proppants (sand and/or ceramics) Large quantities of HCI (shale acidization)



### Fate of fracturing fluids?

10-30% of flowback water is recovered

#### Flowback water is contaminated

Total Dissolved Solids (TDS), chlorides, Naturally Occurring Radioactive Material (NORM), chemical additives

#### Flowback can be:

Placed in containment pits, treated at wastewater plants, stored in underground injection wells or recycled (many new technologies are emerging)

### **Experimental Approach**

Baseline measurements are incredibly valuable in assessing the anthropogenic effects of unconventional drilling

Scheduled monitoring can identify changes/fluctuations in groundwater quality

Advanced analytical tools are available to detect the occurrence of contamination events that may be directly or indirectly attributed to unconventional drilling activity

During a contamination event, environmental forensics can be used to identify the exact source

### **Basic Water Quality**



pH Total Dissolved Solids (TDS) Salinity Conductance Temperature Dissolved Oxygen (DO) Oxidation Reduction Potential (ORP)

### Shimadzu Center for Advanced Analytical Chemistry

#### \$8.5 Million dollar analytical facility

-Method development for the detection and quantification of multiple analytes

- -Highly sensitive detection thresholds and screening applications allow for data to be collected rapidly, accurately and cost-effectively
- More data equates to more informed decisions



### **Developed Methodologies**

#### Gas-Chromatography Mass-Spectrometry (GC-MS)

Methanol Ethanol n-propanol Isopropanol n-Butanol 2-Ethylhexanol 2-Butoxy Ethanol **Propargyl Alcohol** Benzene Toluene Phenol

Benzylchloride Ethylbenzene 0-, m-, & p-Xylenes 1,2,4-Trimethyl Benzene 1,3,5-Trimethyl Benzene Isopropyl Benzene d-Limonene Naphthalene **1-Methyl Naphthalene** 2-Methyl Naphthalene 1-Naphthol

2-Naphthol **Ethylene Glycol** Polyethylene Glycol Propylene Glycol **Dipropylene Glycol Monomethyl** Ether **PEG 200** Glycerol Acetophenone Dimethylformamide Glutaraldehyde Acetaldehyde Di(2-Ethylhexyl) Phthalate Pthalic Anhydride **Bisphenol A** 

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)

Quantification of 70+ minerals and metals

| ICPE-9000 element analysis |          |          |          |          |          |          |          |          |          |          |          |          | nd above |          |                     |          |                     |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------|----------|---------------------|
| 1a                         | 2a       | 3b       | 4b       | 5b       | 6b       | 7b       | 8        |          |          | 1b       | 2b       | 3a       | 4a       | 5a       | 6a                  | 7a       | 0                   |
| H 1                        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |                     |          | 2<br>He             |
| Li 3                       | 4<br>Be  |          |          |          |          |          |          |          |          |          |          | 5<br>B   | C 6      | 7<br>N   | 0                   | 9<br>F   | <sup>10</sup><br>Ne |
| 11<br>Na                   | 12<br>Mg |          |          |          |          |          |          |          |          |          |          | 13<br>Al | 14<br>Si | 15<br>P  | 16<br>S             | 17<br>Cl | 18<br>Ar            |
| 19<br>K                    | 20<br>Ca | 21<br>Sc | 22<br>Ti | 23<br>V  | 24<br>Cr | 25<br>Mn | 26<br>Fe | 27<br>Co | 28<br>Ni | 29<br>Cu | 30<br>Zn | 31<br>Ga | 32<br>Ge | 33<br>As | 34<br>Se            | 35<br>Br | 36<br>Kr            |
| 37<br>Rb                   | 38<br>Sr | 39<br>Y  | 40<br>Zr | 41<br>Nb | 42<br>Mo | 43<br>Tc | 44<br>Ru | 45<br>Rh | 46<br>Pd | 47<br>Ag | 48<br>Cd | 49<br>In | 50<br>Sn | 51<br>Sb | 52<br>Te            | 53<br>   | <sup>54</sup><br>Xe |
| Cs                         | 56<br>Ba | *L       | 72<br>Hf | 73<br>Ta | 74<br>W  | 75<br>Re | 76<br>Os | 77<br>Ir | 78<br>Pt | 79<br>Au | 80<br>Hg | 81<br>Tl | 82<br>Pb | 83<br>Bi | <sup>84</sup><br>Po | 85<br>At | 86<br>Rn            |
| 87<br>Fr                   | 88<br>Ra | **<br>A  |          |          |          |          |          |          |          |          |          |          |          |          |                     |          |                     |
| *                          | 57       | 58       | 59       | 60       | 61       | 62       | 63       | 64       | 65       | 66       | 67       | 68       | 69       | 70       | 71                  | ICPE-    | 9000                |

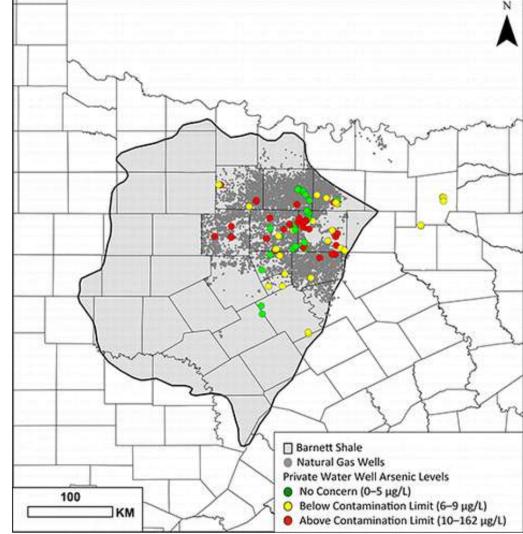
| *L  | 57       | 58       | 59       | 60      | 61       | 62       | 63       | 64       | 65       | 66       | 67       | 68        | 69        | 70        | 71        | ICPE-9000                                                                              |
|-----|----------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|----------------------------------------------------------------------------------------|
|     | La       | Ce       | Pr       | Nd      | Pm       | Sm       | Eu       | Gd       | Tb       | Dy       | Ho       | Er        | Tm        | Yb        | Lu        | detection limits (ppb)                                                                 |
| **A | 89<br>Ac | 90<br>Th | 91<br>Pa | 92<br>U | 93<br>Np | 94<br>Pu | 95<br>Am | 96<br>Cm | 97<br>Bk | 98<br>Cf | 99<br>Es | 100<br>Fm | 101<br>Md | 102<br>No | 103<br>Lr | 1 ppb and below<br>Between 1 and 10 ppb<br>Between 10 and 100 ppb<br>100 ppb and above |

### **Developed Methodologies**

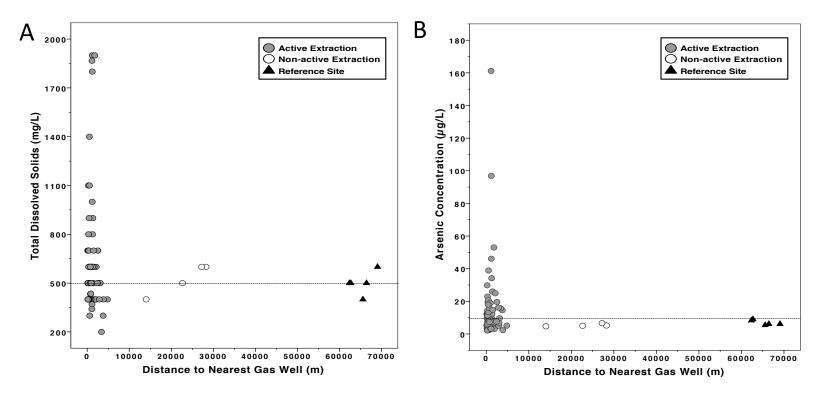
Quantification of Total Organic Carbon (TOC), Inorganic Carbon (IC)

Detection of petroleum hydrocarbons, volatile organics

Subsequent characterization with GC-MS, HS-GC-FID

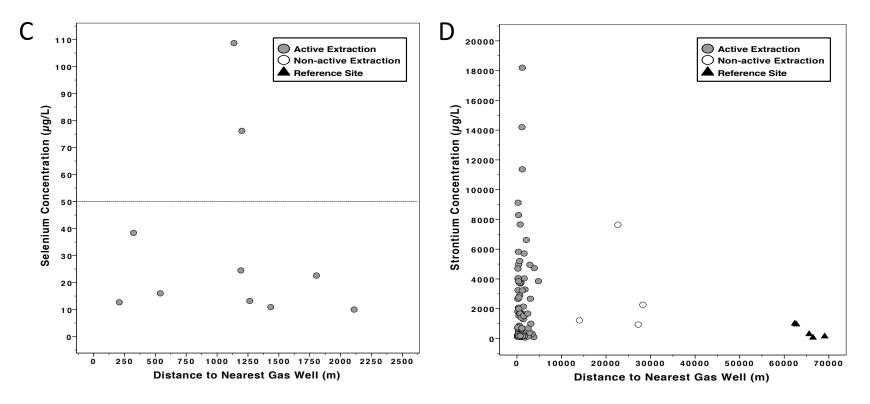

#### Quantification of Total Nitrogen (TN)

Method to assess the relative effect of agriculture on groundwater quality Quantification of major water ions


Fluoride, chloride, carbonate, sulfate, boron, bicarbonate

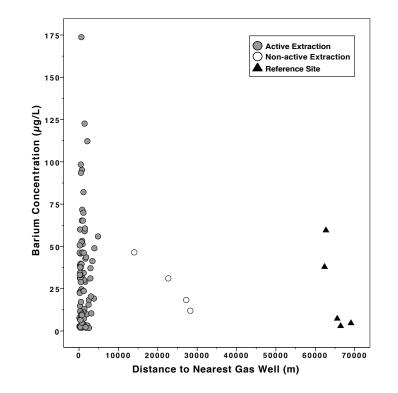
### Elevated Levels of Arsenic

- 29 of the 91 samples collected with active extraction areas contained elevated levels of arsenic (>10  $\mu$ g/L)
- Highest concentration that was detected was 161  $\mu g/L$
- Arsenic was not found to be elevated in any of the control sites
- Fontenot, B. E., et al. *Environ. Sci. Tech.* **2013**, *47*, 10032-10040.




### **Geospatial analysis of TDS and Arsenic**




Fontenot, B. E., et al. Environ. Sci. Tech. 2013, 47, 10032-10040.

#### Geospatial analysis of Selenium and Strontium



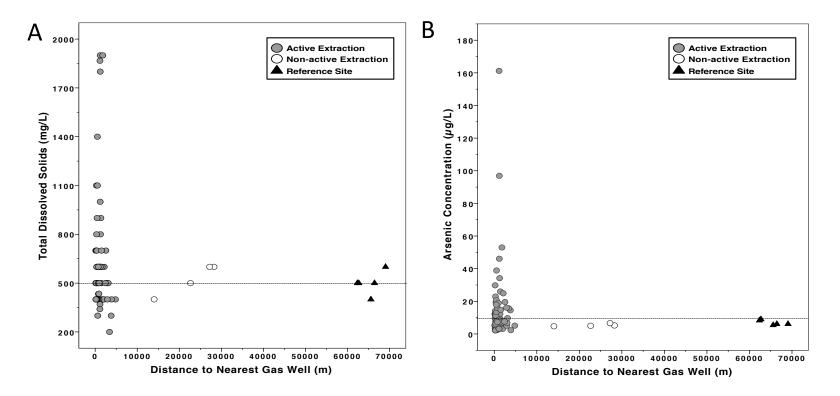
Fontenot, B. E., et al. Environ. Sci. Tech. 2013, 47, 10032-10040.

### **Geospatial analysis of Barium**

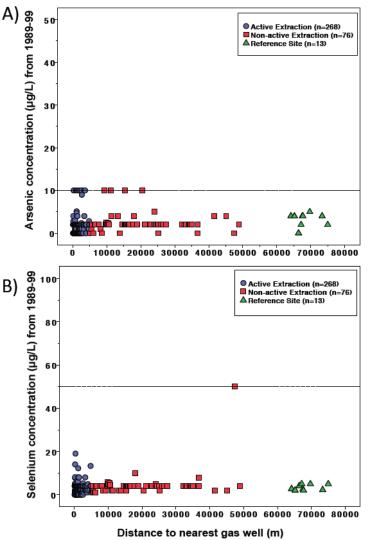


Fontenot, B. E., et al. Environ. Sci. Tech. 2013, 47, 10032-10040.

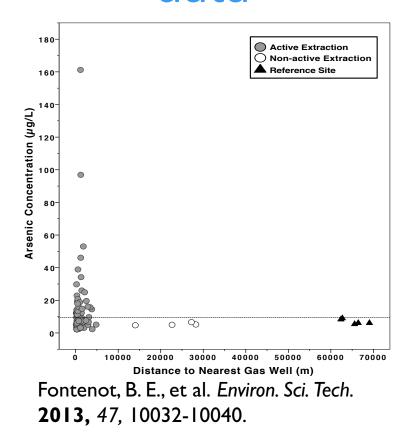
### **Comparison to historical data**


|           |     | Histori  | cal Data (1989-99   | )                |    | Active Extrac | tion Area Wells ( <i>I</i> | V = 91)          | Non-active and Reference Area Wells ( $N = 9$ ) |             |                     |                  |  |
|-----------|-----|----------|---------------------|------------------|----|---------------|----------------------------|------------------|-------------------------------------------------|-------------|---------------------|------------------|--|
|           | N   | Range    | Mean ± Std<br>Error | % ≥ MCL          | Ν  | Range         | Mean ± Std<br>Error        | % ≥ MCL          | Ν                                               | Range       | Mean ± Std<br>Error | % ≥ MCL          |  |
| TDS       | 344 | 129–3302 | 670.3 ± 21.5        | 61               | 91 | 200–1900      | 585.1 ± 35.1*              | 54.9             | 9                                               | 400–600     | 500 ± 31.6          | 77.8             |  |
| Arsenic   | 241 | 1–10     | 2.8 ± 0.1           | 0                | 90 | 2.2–161.2     | 12.6 ± 2.2*                | 32.2             | 9                                               | 4.7–9.0     | $6.9 \pm 0.7^{*}$   | 0                |  |
| Selenium  | 329 | 0.1–50   | 3.9 ± 0.2           | 0.3              | 10 | 10–108.7      | 33.3 ± 10.5*               | 20               | -                                               | -           | -                   | -                |  |
| Strontium | 99  | 20–16700 | 1028.9 ± 213.7      | N/A <sup>†</sup> | 90 | 66.2–18195    | 2319.8 ± 330.1*            | N/A <sup>†</sup> | 9                                               | 52.4–7646.2 | 1610 ± 787.1        | N/A <sup>†</sup> |  |
| Barium    | 357 | 0.1–382  | 57.2 ± 2.9          | 0                | 90 | 1.8–173.7     | $32.3 \pm 3.3^*$           | 0                | 9                                               | 2.9–60      | 22.4 ± 11.3*        | 0                |  |
| Methanol  | -   | -        | -                   | N/A              | 24 | 1.3–329       | 33.6 ± 13.3                | N/A              | 5                                               | 1.2–62.9    | 27.4 ± 13.7         | N/A              |  |
| Ethanol   | -   | -        | -                   | N/A              | 8  | 1–10.6        | 4.5 ± 1.2                  | N/A              | 4                                               | 2.3–11.3    | 6.8 ± 2.4           | N/A              |  |

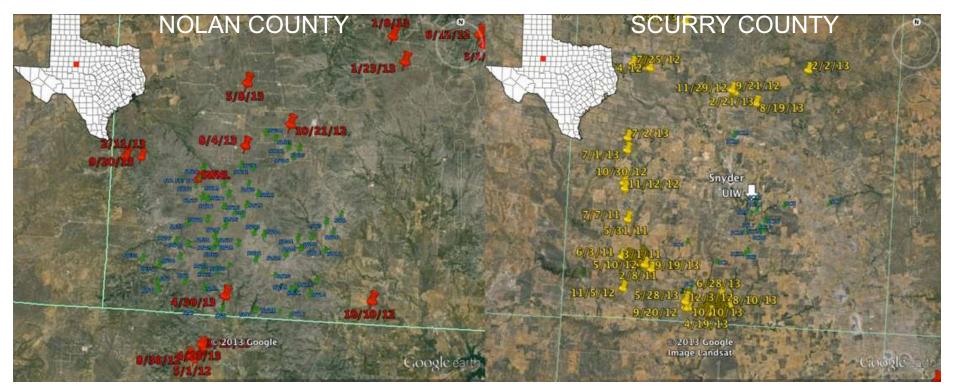
Historical data for the counties sampled in this study were obtained online at www.TWDB.state.TX.us/groundwater/ Maximum Contaminant Limits (MCL) obtained from the Environmental Protection Agency's (EPA) National Primary Drinking Water Regulations, 2009 TDS MCL = 500 mg/L, Arsenic MCL = 10  $\mu$ g/L, Selenium MCL = 50  $\mu$ g/L, Barium MCL = 2000  $\mu$ g/L, N/A indicates no MCL has been established t EPA recommends stable strontium values in drinking water do not exceed 4,000  $\mu$ g/L


1

#### Fontenot, B. E., et al. Environ. Sci. Tech. 2013, 47, 10032-10040.


### **Geospatial analysis of TDS and Arsenic**




Fontenot, B. E., et al. Environ. Sci. Tech. 2013, 47, 10032-10040.



## Comparison to historical data



### Time-lapse analyses in the Cline Shale



60+ samples collected before, during and after unconventional drilling in Nolan county (left), and 50 samples collected in Scurry county (right)

### **Future Directions**

#### Expand our reach into other shale formations

Across the United States, Canada and Europe

Become more involved into other components of the unconventional drilling process and other industrial processes

Use our advanced analytical capabilities to characterize a wide range of environmental events/catastrophes

Develop new technology and best management practices for instances of drilling-related contamination events

Remediation, recycling, appropriate waste disposal