Conversion Factors and Unit Cancellation

A physical quantity must include:

1 foot = 12 inches

1 foot = 12 inches

1 foot _____ = 1 12 inches

1 foot = 12 inches

1 foot	12 inches
12 inches	1 foot

"Conversion factors"

"Conversion factors"

How many cm are in 1.32 meters? equality: 1 m = 100 cm (or 0.01 m = 1 cm) applicable conversion factors:

We use the idea of **unit cancellation** to decide upon which one of the two conversion factors we choose. How many meters is 8.72 cm? equality: 1 m = 100 cm applicable conversion factors:

Again, the units must cancel.

How many feet is 39.37 inches? equality: 1 ft = 12 in applicable conversion factors:

Again, the units must cancel.

How many kilometers is 15,000 decimeters?

X km = 15,000 dm
$$\left(\frac{1 \text{ m}}{10 \text{ dm}}\right) \left(\frac{1 \text{ km}}{1,000 \text{ m}}\right) = 1.5 \text{ km}$$

How many seconds is 4.38 days?

X s = 4.38 d
$$\binom{24 \text{ h}}{1 \text{ d}} \binom{60 \text{ min}}{1 \text{ h}} \binom{60 \text{ s}}{1 \text{ min}}$$

= 378,432 s

If we are accounting for significant figures, we would change this to...

3.78 x 10⁵ s

Simple Math with Conversion Factors

Example Problem

Measured dimensions of a rectangle:

length (L) = 9.70 cmwidth (W) = 4.25 cm

Find area of rectangle.

$$A = L \cdot W$$

= (9.70 cm)(4.25 cm)
= 41.2 cm² cm

W

Convert 41.2 cm² to m².

$$X m^2 = 41.2 cm^2 \left(\frac{1 m}{100 cm}\right) = 0.412 m^2$$
 WRONG!
 $= 0.412 cm m$

Recall that...41.2 $cm^2 = 41.2 cm cm$

$$X m^{2} = 41.2 \text{ cm} \cdot \text{cm} \left(\frac{1 \text{ m}}{100 \text{ cm}}\right) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)$$
$$= 0.00412 \text{ m}^{2}$$
$$X m^{2} = 41.2 \text{ cm}^{2} \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^{2} = 0.00412 \text{ m}^{2}$$

Convert 41.2 cm^2 to mm^2 .

Recall that...41.2 cm² = 41.2 cm^{\cdot}cm

$$X mm^{2} = 41.2 cm cm \left(\frac{10 mm}{1 cm}\right) \left(\frac{10 mm}{1 cm}\right)$$
$$= 4,120 mm^{2}$$
$$X mm^{2} = 41.2 cm^{2} \left(\frac{10 mm}{1 cm}\right)^{2} = 4,120 mm^{2}$$

Measured dimensions of a rectangular solid:

Length = 15.2 cmWidth = 3.7 cmHeight = 8.6 cm

Find volume of solid.

 $V = L \cdot W \cdot H$ = (15.2 cm)(3.7 cm)(8.6 cm) = 480 cm³

Convert to m³.

$$X m^{3} = 480 cm^{3} \left(\begin{array}{c} -1 m \\ 100 cm \end{array} \right) \left(\begin{array}{c} -1 m \\ 100 cm \end{array} \right) \left(\begin{array}{c} -1 m \\ 100 cm \end{array} \right) \left(\begin{array}{c} -1 m \\ 100 cm \end{array} \right) = 0.000480 m^{3}$$
or

$$X m^{3} = 480 cm^{3} \left(\begin{array}{c} -1 m \\ 100 cm \end{array} \right)^{3} = 0.000480 m^{3}$$
or

$$X m^{3} = 480 cm^{3} \left(\begin{array}{c} -1 m \\ 100 cm \end{array} \right) = 4.80 \times 10^{-4} m^{3}$$

Convert to m³...

Measured dimensions of a rectangular solid:

Length = 15.2 cm $\rightarrow 0.152$ m Width = 3.7 cm $\rightarrow 0.037$ m Height = 8.6 cm $\rightarrow 0.086$ m H

Find volume of solid.

Λ/

Convert to mm³.

By what factor do mm and cm differ? 1 cm = 10 mm 10

By what factor do mm² and cm² differ? $(1 \text{ cm}^{3^2}=1(00 \text{ mm}^2)^2)^2$ 100

By what factor do mm³ and cm³ differ? $(1 \text{ cm})^3 = 1(000 \text{ mm})^3$ 1,000