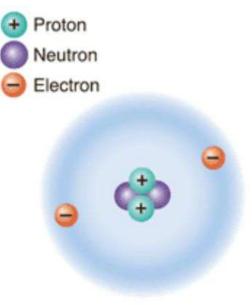



### Atoms

- The basic unit of matter is called an Atom
- Atoms are incredibly small, but despite its extremely small size, an atom contains subatomic particles that are even smaller
- Three subatomic particles:
  - Proton Neutron
  - Electron

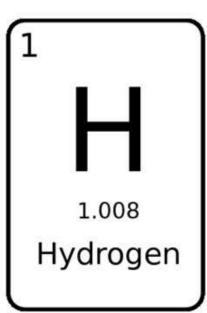



| Particle | Charge       | Location in Atom                                 |
|----------|--------------|--------------------------------------------------|
| Proton   | Positive (+) | Nucleus                                          |
| Neutron  | Neutral (0)  | Nucleus                                          |
| Electron | Negative (-) | Constant<br>motion<br>surrounding the<br>nucleus |

### Atoms

- Nucleus:

- Center of the atom that contains the protons and neutrons
- Electrons move around the nucleus in orbitals




Helium Atomic number = 2 Mass number = 4

- Atoms are neutral even with the charged
- particles because it has an equal number of both electrons (-) & Protons (+)

### **Elements**

- Element:
- Pure substance that consists entirely of one type of atom
- More than 100 elements are known, but
- only about two dozen are commonly found
- in living organisms
- Elements are represented by a one- or two-letter symbol



### Elements

- The number of protons in an atom of an element is the
- element's
- atomic number

#### PERIODIC TABLE OF THE ELEMENTS

| H        |          |          |           |                 |                 |           |           |           |           |           |          |            |                |            |           |            | 2<br>He    |
|----------|----------|----------|-----------|-----------------|-----------------|-----------|-----------|-----------|-----------|-----------|----------|------------|----------------|------------|-----------|------------|------------|
| 3<br>Li  | 4<br>Be  |          |           |                 |                 |           |           |           |           |           |          | 5<br>B     | <sup>6</sup> C | 7<br>N     | 80        | 9<br>F     | 10<br>Ne   |
| 11<br>Na | 12<br>Mg |          |           |                 |                 |           |           |           |           |           |          | 13<br>AI   | 14<br>Si       | 15<br>P    | 16<br>S   | 17<br>CI   | 18<br>Ar   |
| 19<br>K  | 20<br>Ca | Sc       | 22<br>Ti  | 23<br>V         | 24<br>Cr        | 25<br>Mn  | Fe        | 27<br>Co  | 28<br>Ni  | 29<br>Cu  | 30<br>Zn | 31<br>Ga   | 32<br>Ge       | 33<br>As   | 34<br>Se  | 35<br>Br   | 36<br>Kr   |
| 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr  | 41<br>Nb        | 42<br><b>Mo</b> | 43<br>Tc  | 44<br>Ru  | 45<br>Rh  | 46<br>Pd  | 47<br>Ag  | 48<br>Cd | 49<br>In   | 50<br>Sn       | 51<br>Sb   | 52<br>Te  | 53<br>     | 54<br>Xe   |
| 55<br>Cs | 56<br>Ba | 57<br>La | 72<br>Hf  | 73<br><b>Ta</b> | 74<br>W         | 75<br>Re  | 76<br>Os  | 77<br> r  | 78<br>Pt  | 79<br>Au  | 80<br>Hg | 81<br>TI   | 82<br>Pb       | 83<br>Bi   | 84<br>Po  | 85<br>At   | 86<br>Rn   |
| 87<br>Fr | 88<br>Ra | 89<br>Ac | 104<br>Rf | 105<br>Db       | 106<br>Sg       | 107<br>Bh | 108<br>Hs | 109<br>Mt | 110<br>Ds | 111<br>Rg | 112      | 113<br>Uut | 114            | 115<br>Uup | 116<br>Lv | 117<br>Uus | 118<br>Uuo |
|          |          |          | 58        | 59              | 60              | 61        | 62        | 63        | 64        | 65        | 66       | 67         | 68             | 69         | 70        | 71         |            |
|          |          |          | Ce        | Pr              | Nd              | Pm        | Sm        | Eu        | Gd        | Tb        | Dy       | Ho         | Er             | Tm         | Yb        | Lu         |            |
|          |          | **       | 90        | 91              | 92              | 93        | 94        | 95        | 96        | 97        | 98       | 99         | 100            | 101        | 102       | 103        |            |

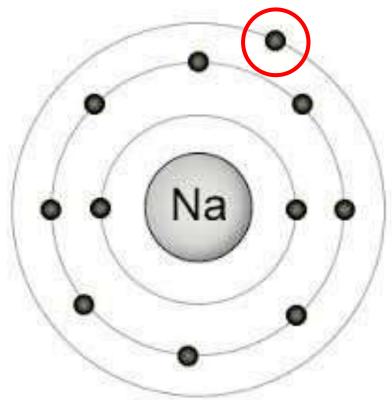
Am Cm Bk Cf Es Fm

### **Chemical Compounds**

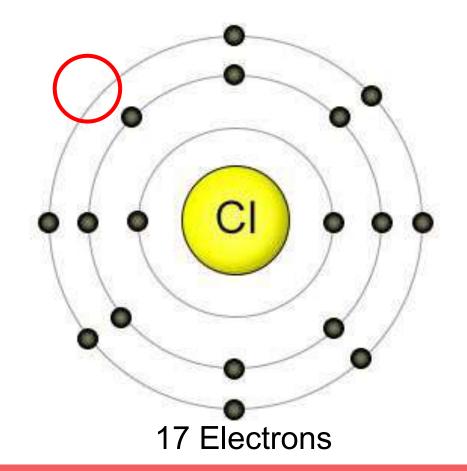
- Chemical Compound/Molecule:
- substance formed by the chemical combination of two or more elements in definite proportions
- In nature, most elements are found combined with other elements in compounds
- Scientists show the composition of compounds by a kind of shorthand known as a chemical formula.

### **Chemical Compounds**

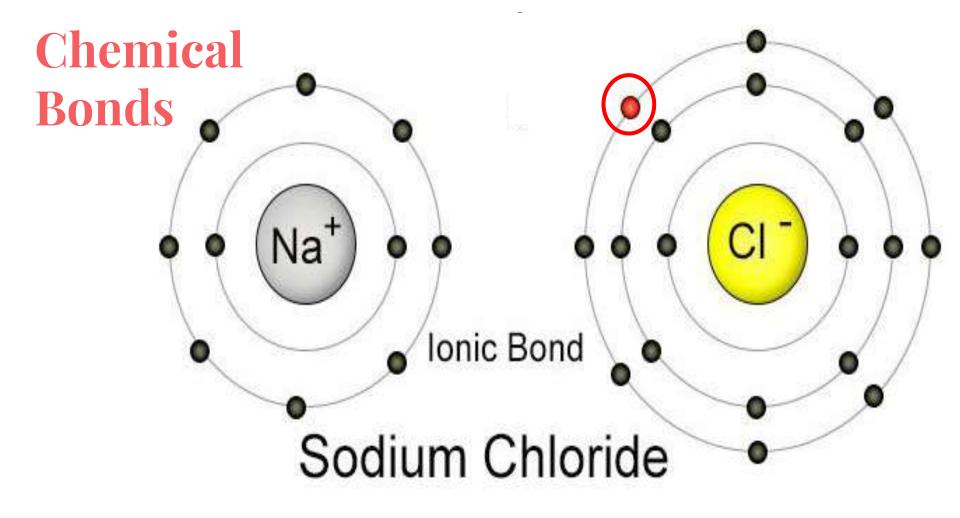
- Water, H<sub>2</sub>O (Chemical Formula)
  - Contains two atoms of hydrogen for each atom of oxygen
- Table Salt: NaCl (Chemical Formula) 1:1 Ratio
- Hydrogen Peroxide: H<sub>2</sub>O<sub>2</sub> (Chemical Formula)
- Carbon Dioxide: CO<sub>2</sub> (Chemical Formula)


- Chemical Bonds:
  - link that holds together atoms in compounds
- Bond formation involves the electrons that surround each atomic nucleus
- The main types of chemical bonds are ionic bonds and covalent bonds

- Ionic Bond:
  - formed when one or more electrons
- are transferred from one atom to another
- Strong attraction between oppositely charged ions, a positive ion and a negative ion come together
- lons are positively and negatively charged atoms
  - Think of the MVP Award: One player gets the trophy


**Tonic** bonc

Ket neghtive


- Sodium (Symbol Na) is a chemical element.
  - Chlorine (Symbol Cl) is a chemical element.
- When 1 sodium atom & 1 chlorine atom bond together (Symbol NaCl) they form the compound Sodium Chloride
- This is commonly known as Table Salt

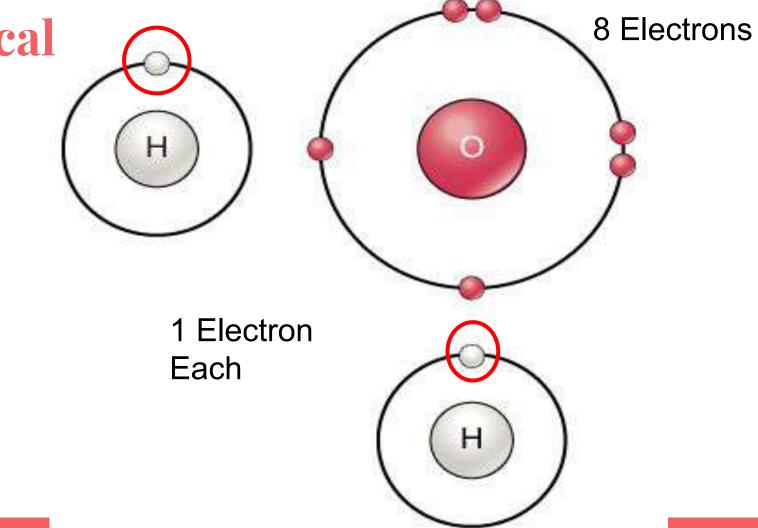


#### **11 Electrons**



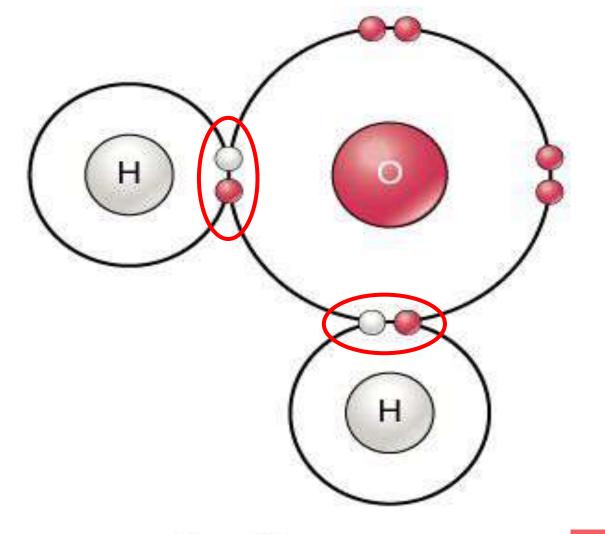
- The valence electron is <u>transferred</u> from sodium to chlorine.
- Sodium now becomes a Sodium Ion (Na<sup>+</sup>)
- Chlorine is now negative and is a Chlorine Ion (Cl<sup>-</sup>)
- Sodium Chloride is held together by "OPPOSITES ATTRACT", the attraction between a Sodium Ion (Na<sup>+</sup>) and Chlorine Ion (Cl<sup>-</sup>)




#### Chemical Bonds - Covalent Bond:

Covalent bond

- forms when electrons are shared between atoms
- It means that the moving electrons actually travel in the orbitals of both atoms
- These bonds very strong and usually do not break easily


### Think of CO-MVP Award: Both are trying to take it

- Hydrogen (Symbol H) is a chemical element
  - Oxygen (Symbol O) is a chemical element
- When 2 hydrogen atoms and 1 oxygen atom bond together (Symbol H2O) they form the compound commonly known as water



- The valence electrons are <u>shared</u> between the 2 hydrogen and oxygen atoms
- The electron orbitals actually overlap so that the shared valence electrons fly around the nuclei of all 3 atoms.
- This is an example of a covalent bond.

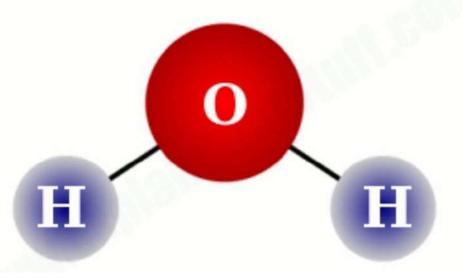
### Covalent Bond



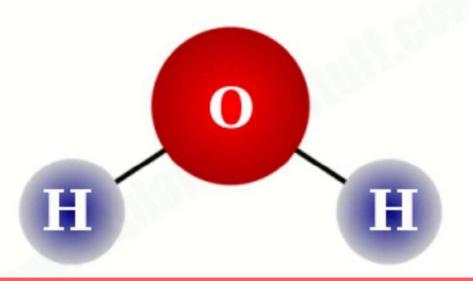
Let's stop & Think: Out of the two bonds, which type of bond is stronger, ionic or covalent?

## Any idea why?

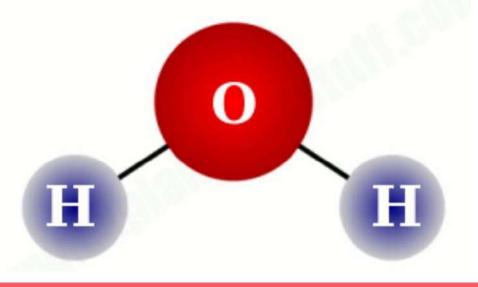
## Journal Entry


- Water is the single most abundant compound in most living things
- Water covers three fourths of Earth's surface
- Water is one of the few compounds that is a liquid at
- the temperatures found over much of Earth's surface

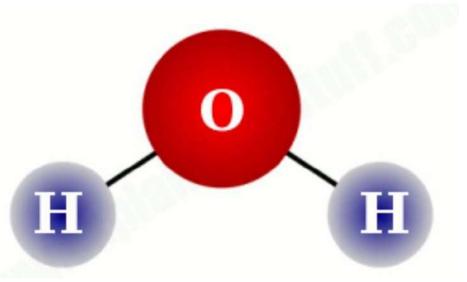
- Unlike most substances, water expands as it freezes
- Ice is less dense than liquid water, which explains why ice floats on the surface of lakes and rivers
- Water is found on earth in all 3 phases
  - Solid Gas
  - Liquid


- Water is a neutral molecule
- The positive charges on its 10 protons balance out the negative charges on its 10 electrons
- Water ( $H_2O$ )

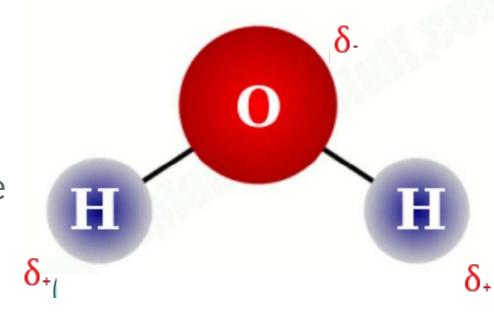
Oxygen has 8 protons


Hydrogen has 1 proton




- With 8 protons in its nucleus, an oxygen atom has a much stronger attraction for electrons than does the hydrogen atom with a single proton in its nucleus
- At any moment, there is a greater probability of finding the shared electrons near the oxygen atom than near the hydrogen atom



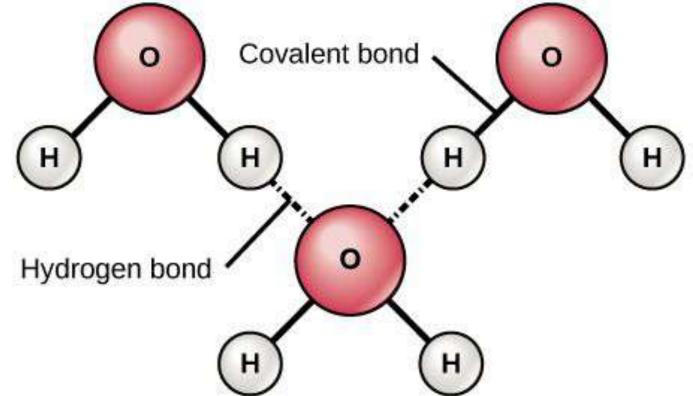

- Water has a bent shape
- Therefore the oxygen atom is on one end of the molecule and the hydrogen atoms are on the other



- Oxygen's larger size & greater attraction for electrons causes the Oxygen side of the water molecule to have a slightly negative charge
- Hydrogen atoms will have a slightly positive charge



- Polar molecule:
- A molecule in which the charges are unevenly
- distributed



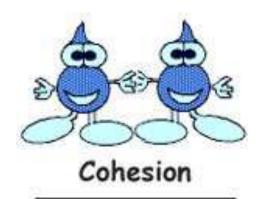

 A water molecule is polar because there is an uneven distribution of charge between the slightly positive Hydrogen atoms & the slightly negative oxygen atoms

- Because of its polarity, water molecules form hydrogen bonds with other water molecules
- Polar molecules have a very strong attraction toward one another
- The attraction between the hydrogen atom on one water molecule and the oxygen atom on another water molecule is an example of a hydrogen bond

- Hydrogen bonds are the bonds which hold individual water molecules together
- Hydrogen bonds are not as strong as covalent or ionic bonds
- Water's ability to form multiple hydrogen bonds is responsible for many of its special properties

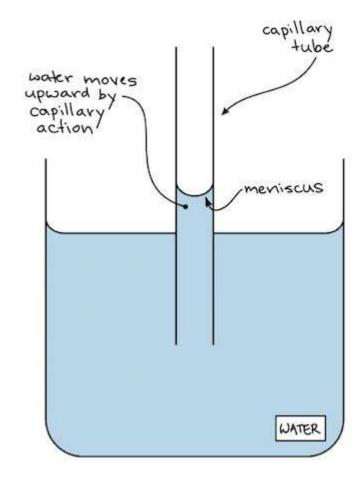
# Draw MULTIPLE hydrogen bonds between several water molecules




- Cohesion:

- an attraction between same molecules (substance)
- Due to surface tension, insects and spiders can walk on a pond's surface. They do not weigh enough to break the
- hydrogen bonds at the surface
- Cohesion causes molecules to draw
- inward at surface




- Adhesion

- an attraction between molecules of different substances
- Adhesion causes water to bend at surface
- It's the ability of water molecules to stick to other materials





- Adhesion between water and glass also causes water to rise in a narrow tube against the force of gravity
- Capillary action is one of the forces that draw water out of the roots of a plant and up into its stems and leaves.



### **Solutions & Suspensions**

- Water is not always pure—it is often found as part of a mixture
- Mixture:
- a material composed of two or more elements or compounds that are physically mixed together but not chemically combined.
- Example: Salt and pepper

Sugar and Sand

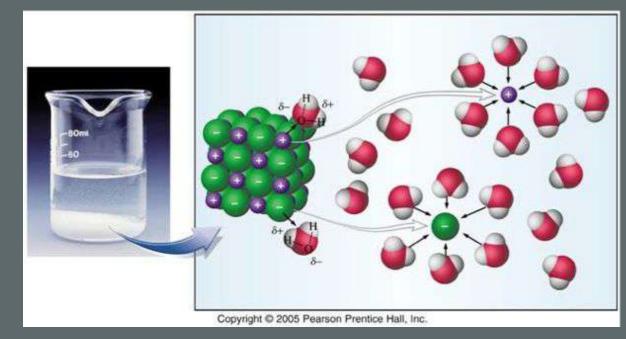
### **Solutions & Suspensions**

- Two types of mixtures that can be made with water are solutions and suspensions
- Solution:
- mixture of two or more substances in which the molecules of the substances are evenly distributed
  Example: Salt & Water

#### **Solutions & Suspensions**

- The salt & chloride (NaCl: Table Salt) ions gradually become dispersed in the water
- Solute:
  - Substance that gets dissolved in a solution

#### Example: Salt


- Solvent: The substance in which the solute dissolves in

#### Example: Water

#### **Solutions & Suspensions**

- Water's polarity gives it the ability to dissolve both ionic compounds and other polar molecules
- Without exaggeration, water is the greatest solvent on
- Earth

### How does NaCl dissolve in water?



The positive hydrogen of H2O attracts the CI- ion and the negative oxygen of H2O attracts the Na+ ion. Water literally pulls NaCI apart

#### **Solutions & Suspensions**

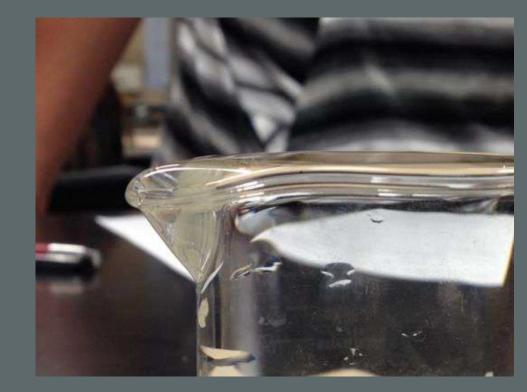
- Some materials do not dissolve when placed in water but separate into pieces so small that they do not settle out
- Suspensions:
  - A mixture of water and nondissolved materials

Example: blood, milk, oil in water, mud in water

#### **Solutions & Suspensions**

- Are the following Solutions or Suspensions:
- Salt and Water Solution Orange Juice with Pulp
  - Sand and Water Suspension
  - Milk Suspension
  - Kool-Aid Solution
  - Chicken Noodle Soup Suspension Coffee
  - Salad dressing Solution




**Suspension** 

**Suspension** 

Blood

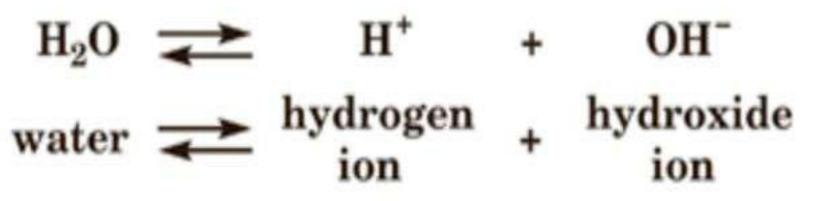
#### Properties of Water Lab

Why does water sit on the rim of the beaker without dripping off?



## Why does the paperclip float?




# Why did the cotton absorb the water?



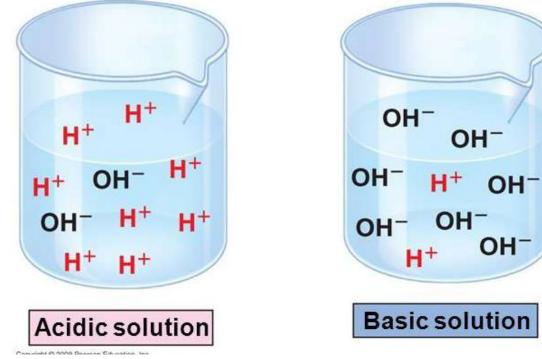
Why did the cotton eventually sink?



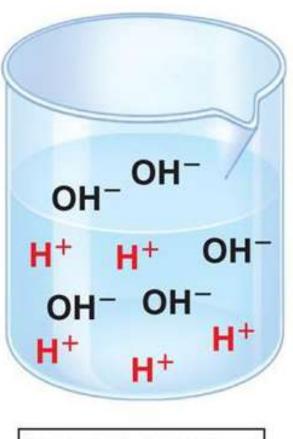
- A water molecule can react to form ions



- Because the number of positive hydrogen ions produced is equal to the number of negative hydroxide ions produced, water is neutral


- pH:
- measurement system used to indicate the concentration of hydrogen ions (H+) in solution; ranges from 0 to 14
- At a pH of 7, the concentration of H+ ions and OHions is equal

- Acidic:
  - Solutions with a pH below 7
  - They have more H+ ions than OH- ions
- Strong acids tend to have pH values that range from 1 to 3


- Basic:
  - Solutions with a pH above 7
  - They have more OH- ions than H+ ions
- Strong bases, such as lye, tend to have pH values ranging from 11 to 14

|          | Type of lons     | рН   | Examples                         | Characteristics                  |
|----------|------------------|------|----------------------------------|----------------------------------|
| Acids    | H <sup>+</sup>   | 1-7  | Lemon, vinegar,<br>soda, aspirin | Sour, burns,<br>dissolves things |
| Neutrals | H <sub>2</sub> O | 7    | Pure Water                       | Not acidic, not<br>basic!        |
| Bases    | OH-              | 7-14 | Soap, baking<br>soda, ammonia    | Bitter, slippery                 |

- Drawing: How would a basic solution differ from an acidic solution?

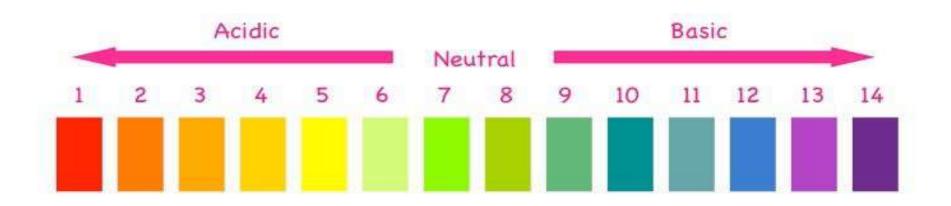


- Drawing: What happens when you mix an Acid & Base solution?

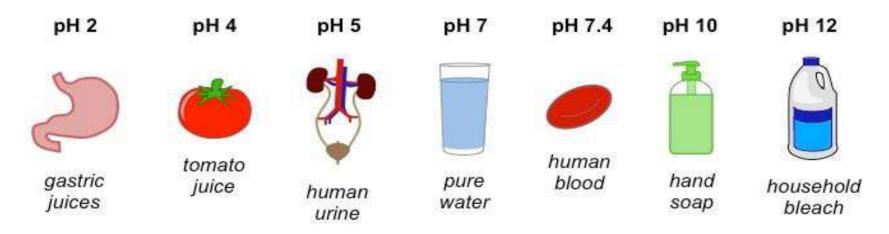


**Neutral solution** 

- Buffers


- weak acids or bases that react with strong acids and bases to prevent sharp changes in pH

- Buffers are so important:


When acids and bases are added to the body, the blood "buffers" prevent a drastic pH change

- Buffers help to neutralize pH
- Buffers help control pH in blood, etc
- The pH of the fluids within most cells in the human
- body must generally be kept between 6.5 and 7.5.
- If the pH is lower or higher, it will affect the chemical reactions that take place within the cells

Helps with maintaining homeostasis



#### Examples of pH Conditions:



#### Journal Entry

### Macromolecule Jigsaw & Concept Map

- Chemical Reactions:
- Process that transforms one set of compounds into another
- Some reactions occur very quickly, while others occur extremely slowly
- Anything your body does involves a chemical reaction

- How do you know when a chemical reaction has occurred:
  - Change in temperature (products feel cold or hot)
  - Change in color
  - Formation of a solid
  - Formation of a gas bubbles!
  - Giving off light

- Chemical reactions are a change from an initial set of molecules to another set of molecules through the breaking of bonds and formation of new bonds
- Reactants:
- The elements or compounds that enter into a chemical reaction
- Starting substances (left side) of a chemical equation

- Products:
- The elements or compounds produced by a chemical reaction
- Substances formed (right side) of a chemical equation

#### **Chemical Equations**

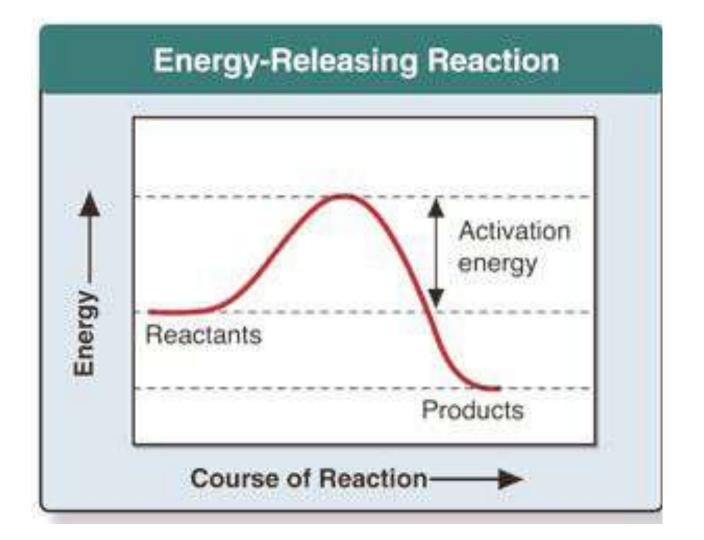
- How to write a chemical reaction
  - Reactants + Reactant  $\rightarrow$  Product + Product
- Real Life Example:
  - carbon dioxide + water  $\rightarrow$  glucose + oxygen
- Chemical Reaction:

$$\operatorname{CO}_2 + \operatorname{H}_2 \operatorname{O} \rightarrow \operatorname{C}_6 \operatorname{H}_{12} \operatorname{O}_6 + \operatorname{O}_2$$

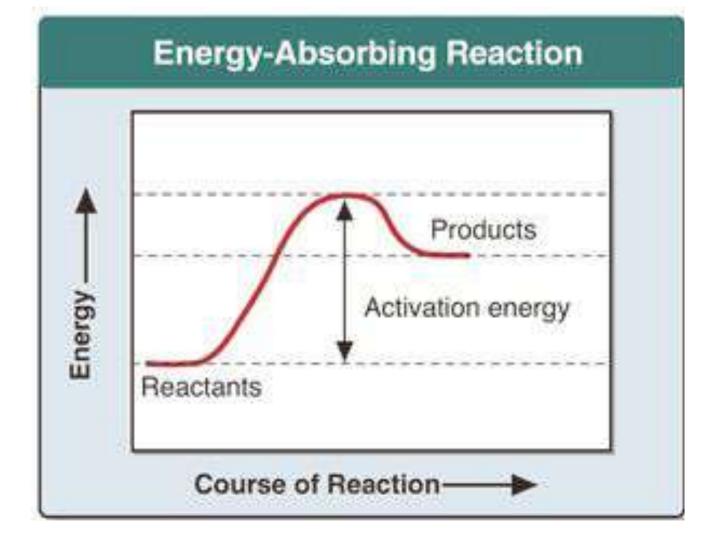
#### **Chemical Equations**

- Chemical Reaction:

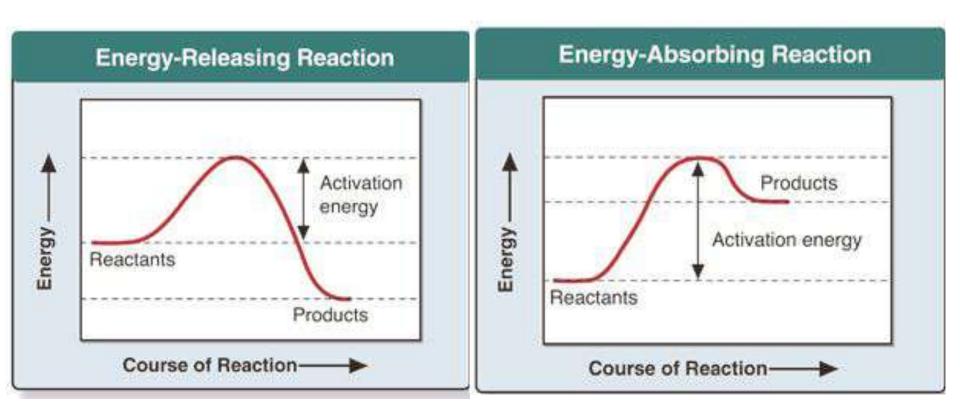
$$\begin{array}{ccc} CO_2 + H_2O & \rightarrow & C_6H_{12}O_6 + O_2 \\ \uparrow & & \uparrow \\ \hline \\ Reactants & Products \end{array}$$


#### **Chemical Equations**

- Chemical Reaction:


$$CO_2 + H_2O \rightarrow H_2CO_3$$
  
 $\uparrow \qquad \uparrow$   
Reactants Products

- Energy is released or absorbed whenever chemical bonds form or are broken
- Some chemical reactions release energy, and other reactions absorb energy
- Energy changes are one of the most important factors in determining whether a chemical reaction will occur


- Chemical reactions that release energy often occur spontaneously
  - Energy is released in the form of heat
- This is called an Exothermic (releases heat) reaction
  - Energy of the products is lower than the energy of the reactants
  - Example: Combustion



- Chemical reactions that absorb energy will not occur without a source of energy
  - Energy is taken in from the surroundings
- This is called an Endothermic (absorbs heat)
  - Energy of the products is higher than energy of the reactants
  - Example: Ice Packs



#### What is similar between both reactions?



- Even chemical reactions that release energy do not always occur spontaneously
- Let's think about it

Why aren't our note pages spontaneously bursting into flames?

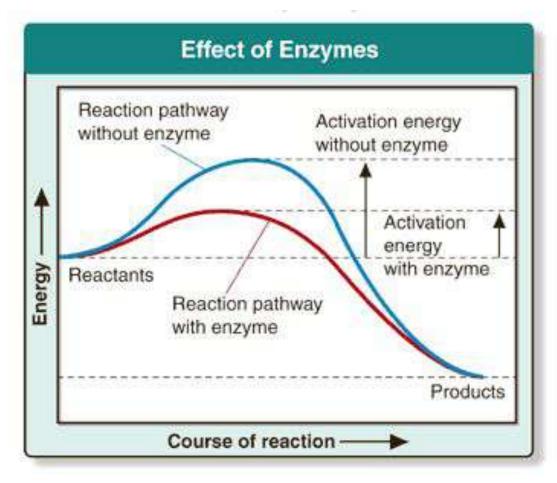
- We need to put IN the energy to get the fire started, which is called the Activation Energy

## **Energy in Reactions**

#### - Activation Energy:

- The energy that is needed to get a reaction started
- Activation energy is a factor in whether the overall
- chemical reaction releases energy or absorbs energy.
- REMEMBER:

All chemical reactions require ACTIVATION ENERGY to get started.




- Some chemical reactions that make life possible are too slow or have activation energies that are too high to make them practical for living tissue.
- These chemical reactions are made possible by catalyst
- Catalyst:
- substance that speeds up the rate of a chemical reaction by lowering the activation energy

### Enzymes

- Enzymes:

Proteins that act
as biological catalysts
by speeding up
chemical reactions
that take place in cells

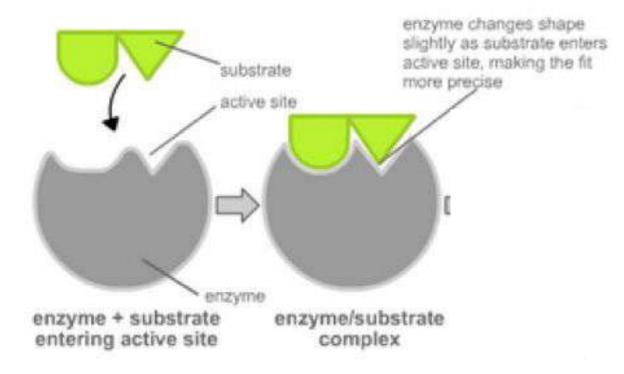


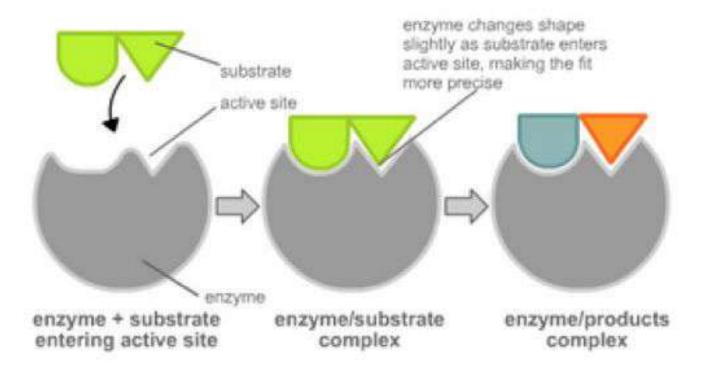


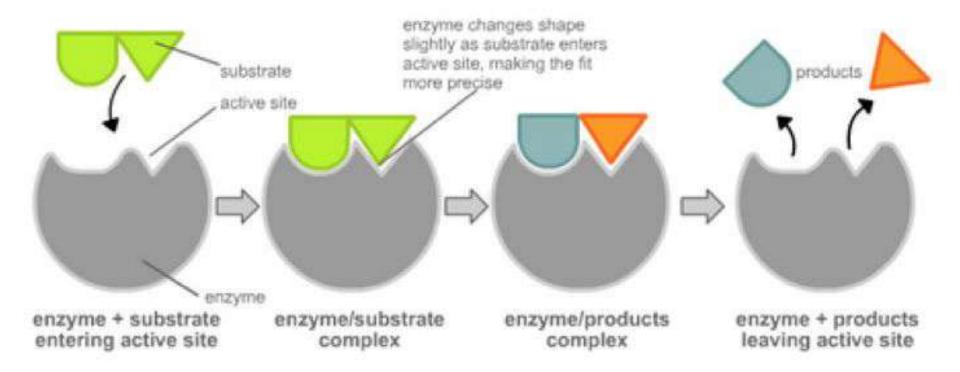
- Enzymes are very specific, generally catalyzing only one chemical reaction
- Part of an enzyme's name is usually derived from the reaction it catalyzes
- Enzymes provide a site where reactants can be brought together to react
  - This site reduces the energy needed for reaction



- Substrates:
  - reactant of an enzyme-catalyzed reaction
- Active Site:
  - site on the enzyme where the substrate binds
- Active Site & Substrate have complementary shapes and fit together like a lock & key
  - Referred to as the Enzyme/Substrate Complex


### Enzymes


- Enzymes are specific and only work with their specific substrate
- Once they bind, they "unlock" the energy in that
- substrate to change it into a different product
  - Example: amylase is an enzyme that breaks down amylose (compound found in starch)
- Once the reaction is over, the products of the reaction are released and the enzyme is free to start the process again




- Enzymes are not changed during the chemical reaction.
  - They can be reused after
- Enzymes are involved in many reactions in human
- bodies, such as muscle contractions, metabolism, and digestion
- Enzymes are also used commercially in products like detergents to break down stains on clothing









- Enzymes can be affected by any variable that
- influences a chemical reaction
  - Temperature
  - pH Levels
  - Inhibitors
  - Coenzymes

- Temperature:
  - Each enzyme has a temperature range in which it is most effective
  - High temperature (too hot) can denature enzyme (break it apart)
  - Low temperature (too cold) can slow down or stop enzyme activity

- pH:
  - Each enzyme has an ideal pH range
  - Too acidic or too basic can slow down the productivity of an enzyme
- Changes in temp & pH cause a DECREASE in product production

- Competitive Inhibitor:
  - A compound that is similar to the substrate
  - It binds to the active site & blocks the substrate
  - Competitive Inhibitors cause a DECREASE in product production.

- Coenzyme:

- Enzyme helper
- Compound that helps enzyme & substrate bind
- Coenzymes cause an INCREASE in product production