Chemistry Semester 1 Final Review

Ch. 1 Introduction to Chemistry

Chemistry; its branches, technology, scientific method, and problem solving.

- 1. Know the definition of matter.
- 2. Know the definition of chemistry
- 3. Know the scientific method.

Ch 2 Matter and Change

Properties of Matter

More hints:

1. Know the following words: Physical vs Chemical properties and changes.

2. Categorize Matter as either homogeneous, heterogeneous, solution, compound, or, element.

3. Know the difference between physical & chemical properties. (Intensive vs extensive)

4. Know the difference between physical & chemical changes.

Examples:

a. Give three physical properties

b. Give three chemical properties

c. Classify as chemical or physical properties:

color, reactivity, flammability, stability, malleability, solubility, melting point, rusts, evaporates readily

Ch 3 Scientific Measurement

- 1. Know the basic units of the SI system.
- 2. Know the prefixes of the SI system (micro-Mega).
- 3. Know how to convert between units & prefixed units. i.e. km to m
- 4. Know how to convert between different prefixed units. i.e. dm to km
- 5. Know how to convert between combinations & complex forms, i.e. mL to cm3, cm3 to dm3, km/h to m/sec
- 6. Know how to put a number into scientific notation.
- 7. Know how to change scientific notation to standard notation.
- 8. Know how to use significant digits

9. KNOW HOW TO CONVERT USING DIMENTIONAL ANALYSIS.

a	•
Conve	ersions:
COnve	asions.

45mg=	<u>g</u>	2.05 kg=	mg	101hm=	mm
312L=	ml	1.35 km/hr=	m/s	$21 \text{cm}^3 =$	m ³
75.1ml=	\underline{cm}^3	$51 \text{cm}^2 =$	\underline{km}^2	9dg=	g
$1.2 \text{ X } 10^2 \text{ cm}=$	mm	47mm / hr to c	lm / sec	835 m/sec t	to cm/min

Problems:

1. Find the density of an object that has a mass of 45g and a volume of 25.0 cm3.

2. Find the mass of an object that has a density of 4.5g/cm3 and a volume of 11cm3.

3. Calculate the volume of an object in cm3 that has a mass of 22kg and a density of 8.2kg/dm3.

4. The density of aluminum is 2.70 g/cm3. Calculate the mass of aluminum that occupies 75.0 cm3.

	5.	Convert to	o regular o	or scientific	notation.
--	----	------------	-------------	---------------	-----------

a) 12300=		f) 1 x $10^3 =$
b) 40120=		g) 1.110 x 10^4 =
c) 1120000=		h) $2.12 \times 10^{-5} =$
d) 0.0000123=		I) $3.20 \times 10^{-7} =$
e) 0.0120=		i) 4.412 x $10^{11} =$
6. How many sig figs?		5/
7300 0.00125	71253	5.012 0.5100
7. Answer to the correct sig figs:		
a) 85+2.3=		e) 42.1/24=_
b) 213.213-12.3 =		f) 101x2134
c) 57+11.1=		g) 2123/3143=
d) $1.2 \times 10^{3+} 4.2 \times 10^{2} =$		h) $2.23 \times 10^5 \times 5.2 \times 10^3 =$

CH 4 Atomic Structure

- 1. Defining the Atom:
 - a. Democritus to Dalton ideas about atoms
 - b. Know the main point of Dalton's Atomic Theory.
- 2. Structure of the Nuclear Atom.
 - a. Identify the three subatomic particles.
 - b. Thompson and the electron.
 - c. Rutherford's Atomic Model.
- 3. Distinguishing Between Atoms.
 - a. Isotopes vs elements

b. Atomic number, Atomic Mass, Mass Number. Know how to calculate the protons, neutrons and electrons in an atom.

c. Into to the Periodic Table

Problems:

- 1. How many protons neutrons, and electrons are in U-235.
- 2. Calculate the average atomic mass of lead containing the following isotopes: 1.4% of Lead-204, 24.1% of Lead-206, 22.1% of Lead-207, 52.4% Lead-208.

CH 5 Electrons in Atoms

- 1. Models of the Atoms:
 - a. Bohr's Model of the atom.
 - b. The quantum mechanical model.
 - i. Principle quantum number: main energy level
 - ii. Angular Momentum Quantum Number: sublevels (s,p,d,f)
 - iii. Magnetic Quantum Number: Orientation in space.
 - iv. Spin quantum number: right or left spin.(two electron per house)
- Electron arrangement in Atoms: electron configuration...
 a. Long way Germanium #32 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p² Val electrons 4.
 - b. Noble gas: Germanium #32 [Ar] $4s^2$, $3d^{10}$, $4p^2$. Valance electrons 4.

- 3. Physics and Quantum Mechanical Model:
 - a. The source of electromagnetic spectrum.
 - b. Electrons jump up into higher energy levels and fall down into lower levels releasing energy in the form of light.

Problems

- 1. Write the electron configuration and determine the valance electrons for...
 - a. Lead, b. Strontium, c. Krypton, d. sodium, e. Aluminum, f. chlorine

CH 6 The Periodic Table

1. Organizing the Elements.

- a. The history of the Periodic Table.
- b. Three broad classes of elements
- 2. Classifying the Element
 - a. describe the information in a periodic table
 - b. Classify elements based on electron configuration and valence electrons.
 - c. Distinguish represented elements and transition metals.
- 3. Periodic Trends
 - a. Describe trends involving, Atomic size, ionization energy, electronegativity.
 - b. Explain how ion are formed

CH 7 Ionic and Metallic Bonding

- 1. Ionic bonds
 - a. Explain how the octet rule applies to ionic bonds. Metal with Nonmetal.
 - b. Determine the number of valence electrons in an atom and predict whether it will gain or lose electrons (cation or anion)
 - c. Describe three properties of Ionic compounds
 - d. Typical Ionic bonds form between active metals with active nonmetals.
- 2. Bonding in metals.
 - a. Describe the arrangement of atoms and valence electrons in metallic bonds.
 - b. Explain the importance of alloys.
 - c. Describe three properties of Metallic Bonds.

Problems: Show a dot structure for NaCl and CaCl₂

CH 8 Covalent Bonding

- 1. Nature of Covalent bonds
 - a. Sharing electrons and the octet rule
 - b. Drawing electron dot diagrams (Lewis structures)
 - c. Draw molecules showing double and triple bonds
 - d. Covalent vs Coordinate Covalent
- 2. Bonding Theories
 - a. VSEPR theory and molecular geometry
 - b. Hybridation involving Carbon.

- 3. Polar Bonds and Molecules
 - a. Electronegativity differences determine the distribution of charge in polar molecules.
 - b. Evaluate the strength of intermolecular attractions compared with the strength of ionic and nonpolar covalent bonds
 - c. Understand the nature of Network Covalent Molecules and the properties associated with them.

Draw Lewis structure for the following, determine the geometry of 2,3,4,5,7.

1. hydrogen gas (H₂)

2. SO₂

3. (IO₃)⁻¹

- 4. CCl₄
- 5. HCl
- 6. C₂H₂
- 7. CO₂

Of the molecules/polyatomic ions above, three show polarity, identify the three and show the relative positive and negative ends of the molecules.

CH 9 Chemical Names and Formulas

Chemical formulas, subscripts, coefficients, naming and writing compounds: traditional system and stock system and acids.

1. Know the following terms: symbol, formula, subscript, and polyatomic ion.

2. Know how to give the formula of a named compound.

- 3. Know how to give the name of a compound from a formula.
- 4. Know how to use the tables of oxidation numbers and polyatomic ions.
- 5. Know the elements that exist as diatomic molecules. (List them) HOFBrINCl

Give the formula:

a) potassium nitrate	d) manganese (II) oxide
b) iron (III) chloride	e) ammonium bromide
c) sodium carbonate	f) tin (IV) phosphate

Name the following:

1. $CaCO_3$	4. AgBr
2. $CuCl_2$	5. Sn ₅
3. SnS_2	6. CdSO ₄

Name the following molecular compounds

1. PCl ₃	3. SiO ₂
2. CCl ₄	4. N_2O_5

Write chemical formula for:	Name the following acids	
1. carbon disulfide	1. HNO ₃	5. HNO ₂
2. dinitrogen trioxide	2. H_2S	6. H ₂ SO ₃
3. oxygen difluoride	3. HCl	
4. nitrogen monoxide	4. HC ₂ H ₃ O ₂	

Write the chemical formulas for the following acids:

- 1. phosphoric acid 5. phosphorous acid
- 2. hydrobromic acid 6. chlorous acid
- 3. sulfuric acid
- 4. hydroiodic acid

Ch 10 Chemical Ouantities

Calculate the Molar mass of:	
1. Ca(OH) ₂	3. $MgCl_2$
2. NaCl	4. CO

Problems:

1. How many oxygen atoms are present in 0.500 mol of CO₂?

2. How many moles are present in 10.37 g of LiF?

3. What is the empirical formula for a compound that is 43.6% phosphorous and 56.4% oxygen?

4. What is the empirical formula for a compound that is 7.9% lithium and 92.1% bromine?

5. A compounds empirical formula is C_2H_5 . If the molar mass is 58 amu, what is the molecular formula?

6. A compounds empirical formula is N_2O_5 . If the molar mass is 108 amu, what is the molecular formula?

7. Find the molar mass of the following compounds:

a. $(NH_4)_4SiF_6$ b. PbO_2 c. Cs_3PO_3 d. $Ga_2(CO_3)_3$

8. Find the percent composition of $Ca_3(PO_4)_2$

9. Calculate the Percent composition of Acetaminophen if a 10.00g sample contains 6.36g carbon, .596g hydrogen, .927g nitrogen and 2.11 g oxygen.

10. Calculate the Empirical and Molecular formula of Acetaminophen if a 10.00g sample contains 6.36g carbon, .596g hydrogen, .927g nitrogen and 2.11 g oxygen and the molar mass is 151.15 g/mole.

11. What is the difference between an empirical formula and a molecular formula?