Chemistry of Matter

Properties and Interactions of Elements

MS State Objectives 2.a. and 2.b.

Elements

Elements are substances that cannot be broken down into simpler substances.
 Made up of only <u>one</u> type of atom
 Basic <u>building</u> blocks of matter
 The smallest particle of an element is an <u>atom</u>.

How many protons does this element have?
How many electrons does this element have?
What is the atomic mass?

Developing the Periodic table

H 1.01	Ш	111	IV	V	VI	VII			
Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5		VIII	
K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7
Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9			
Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106
Ag 108	Cd 112	In 115	Sn 119	Sb 122	Te 128	I 127			
Ce 133	Ba 137	: La 139		Ta 181	W 184		Os 194	Ir 192	Pt 195
Au 197	Hg 201	Ti 204	Pb 207	Bi 209					
			Th		U				

Dmitri <u>Mendeleev</u>, a Russian scientist discovered a set of patterns that seemed to apply to all elements
 arranged the elements in order of increasing <u>atomic</u>

mass (protons + neutrons in the nucleus)

Modern Periodic Table

In 1913, Henry <u>Moseley</u> discovered a way to measure the positive charge in the nucleus to determine the atomic number

arranged the elements by increasing <u>atomic</u> <u>number</u> instead of atomic mass

Periodic Table

- Arranged by increasing atomic number (proton #)
- Rows are called <u>periods</u> & are labeled 1-7

There are 18 columns

- Each column contains a group or family of elements.
- Groups are elements that have similar physical or chemical properties.
 - Ex. All elements in group 1 are metals & react violently with water.

Groups and Periods

водил водил <t< th=""><th>Inser ircn oobait rickwi 26 27 28 N Fee Co Ni 30 55.845 56.903 56.903 31 44 45 46 10 C Ru Rh 11 101.07 100.05 100.02 12 70.07 70.01 100.02</th><th>occpor zine 29 30 Cu Zn sther cadmin 47 48 102/7 13241 98/8 meany</th><th>Locure carton inition 5 6 7 B C N 12011 12011 14 13 14 11 13 14 11 31 32 33 Gaa Ge A 607 72.61 24.05 13 72.61 72.61 13 72.61 74.0 14 9 50 57 15 71 72.61 74.0 18.71 72.61 74.0 19 50 57 10 Sin Sin 118.71 171 77 118.71 121 72.0 118.71 121 72.0 118.71 121 72.0 118.71 82.0 80.0</th><th>Serie Oxygen Flucture 8 9 9 0 F 18.066 071 15.099 18.066 16 17 15.099 15 20 16.091 16 17 10.001 17 20.005 36.463 18 10.001 35.463 16 35.005 30.493 17 20.005 30.493 18 10.001 35.255 19 52 53 10 52 53 10 127.50 127.60 10 127.50 127.60 10 127.60 130.69</th><th>ликин 2 Не такон 10 Ne 20.100 17990 18 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг Аг узо.100 Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг</th><th></th><th></th><th></th><th></th></t<>	Inser ircn oobait rickwi 26 27 28 N Fee Co Ni 30 55.845 56.903 56.903 31 44 45 46 10 C Ru Rh 11 101.07 100.05 100.02 12 70.07 70.01 100.02	occpor zine 29 30 Cu Zn sther cadmin 47 48 102/7 13241 98/8 meany	Locure carton inition 5 6 7 B C N 12011 12011 14 13 14 11 13 14 11 31 32 33 Gaa Ge A 607 72.61 24.05 13 72.61 72.61 13 72.61 74.0 14 9 50 57 15 71 72.61 74.0 18.71 72.61 74.0 19 50 57 10 Sin Sin 118.71 171 77 118.71 121 72.0 118.71 121 72.0 118.71 121 72.0 118.71 82.0 80.0	Serie Oxygen Flucture 8 9 9 0 F 18.066 071 15.099 18.066 16 17 15.099 15 20 16.091 16 17 10.001 17 20.005 36.463 18 10.001 35.463 16 35.005 30.493 17 20.005 30.493 18 10.001 35.255 19 52 53 10 52 53 10 127.50 127.60 10 127.50 127.60 10 127.60 130.69	ликин 2 Не такон 10 Ne 20.100 17990 18 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг узо.100 Аг Аг узо.100 Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг Аг				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Improvement Improvement 1 H 10079 Britian Britian 6.941 9.0122 9.0122 solid Mgg 11 Mgg 12 Mgg 20.900 24.305 pedasting Caldum 19 K 20 Caldum 39.008 40.078 10.911 20100	SC2rrcHarm 21 SC2 41 956 41 956 47.867 2000 22.550 10 2000 22.550 10 2000 22.550 10 20 20 20 20 20 20 20 20 20 20 20 20 20	vanadum 23 V 50.942 51.996 11550	1000 25 26 26 26 26 26 26 26 26 26 26 26 26 26	27 28 2 27 28 2 28 20 Ni C 28 3 20 10 10 10 10 10 10 10 10 10 10 10 10 10	29 20 29 30 20 Zn 546 05.20 20 40	boron carbon 5 6 B C 10-811 12/011 13 14 AI Si 0'dilum 32 Gala Ge 69/22 72.61 500 50	пяторел 7 8 N 0 16 007 16 007 16 07 17 5 099 риокралив 16 16 P 5 20 07/4 32 065 34 ASS See 76 96 78 90 16 90 16 07 16 07 17 0 16 07 16 07 17 0 17 0	Buorine 20026 9 10 9 10 10 Reg 10 Reg 10 Reg 11 Ar 25:453 36 15:453 36 17 Ar 35 36 Bronber Kr 70:004 83:00 50 54
	Rb Sr 85.468 87 87	39 40 Y Zr 88.966 91.224 Indehum badadum	Nb Mo 92,906 95,94 tantasim bungsten		ciod 🗠	A 48 C C C 112.41 013 MM 010	49 50 In Sn 114.82 118.71 RedBurn bad	51 52 Sb Te 121.76 127.60 biamath polonitian	53 54 I Xe 126.90 131.29 ostating radius
	55 56 57-70 Cs Ba ★ 132.91 137.33 francium radium	71 72 Lu Hf 174.97 178.49 Iawrondum rutherfordium	73 74 Ta W 180.95 183.84 dubnium seaborgium	75 76 Re Os 186.21 190.23 1 bohrkum hassium mei	77 78 7 Ir Pt A 92.22 105.08 19 dmenum ununnalium unun	79 80 U Hg 6.97 200.59 Vuntum ununctum	81 82 TI Pb 204,38 207,2 ununguadium	83 84 Bi Po 208.98 [207]	85 86 At Rn [210] [222]
	87 88 89-102 Fr Ra ★★ [223] [226]	103 Lr [262] [261]	105 106 Db Sg [262] [266]	107 108 Bh Hs [269]	109 Mt Uun U [208] [271] [2	11 112 uu Uub [277]			
	*Lanthanide series **Actinide series	Jardharam certam 57 58 La Ce 128.91 140.12 actrium Brodyn 89 90 1271 220.94	prasecdymium necdymium 59 60 Pr Nd 140 91 144 24 productinum usanum 91 92 Paa U 241 04 228 03	arradium samadium 60 61 62 62 Pm Sm E [143] 150.36 1 netkonum 93 94 ar Np Pu A 1237 1240 1	rophim gateIntrin ter 63 64 6 Eu Gd 1 51.96 157.25 15 prickum ord 95 95 96 5 Am Cm E L83 D2471 12	bburn dysposium 65 66 7 98 66 Cf 97 98 67 251	holmium 67 68 HO 164.93 167.26 einsteinium 99 ES 12571 167.26	Bullium. ytterblum 69 70 169,03 173.04 mendelvular nobelium 101 102 Noo 125.9	

Groups/Families

Groups 1 and 2 along with Groups 13 and 18 are called the <u>representative</u> elements.

-elements having similar properties.

hydrogen 1																		heluni 2
н																		Не
1.0079 lithium	beryllium	0											boron	carbon	nitrogen	oxygen	fluorine	4,0026 neon
3	P _a												Ď	ĉ	Ń	Å	9	No
	De												D		IN	U	F	INE
sodium	magnesium												aiuminium	silicon	phosphorus	sultur	chiorine	argon
11	12												13	14	15	16	17	18
Na	Mg												AI	SI	Ρ	S	CI	Ar
22.990	24.305		socialium	stopium	wanadkim	L obrocilium	036666666	lion	ticton	niekol	connor	zine	26,982	28.086	30.974	32.065	35.453 bromine	39.948 korotos
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54,938	55.845	58,933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.90
37	strontium 38		39	40	41	molybdenum 42	43	ruthenium 44	45	palladium 46	47	eadmium 48	49	50	antimony 51	52	53	54 xenon
Ph	Sr		V	Zr	Nb	Mo	Te	Pu	Ph	Dd	Δa	Cd	In	Sn	Sh	To		Yo
100	97.62		88.005	G1 224	02.906		1001	101.07	102.91	106.42	Ay	112.41	114.92	119.71	121.76	127.60	126.00	121.29
cacsium	barium		lutatium	hatnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	poknium	astatine	radon
55	56	57-70	1	12	-13	14	75	16		78	/9	80	81	82	83	84	85	86
CS	Ba	*	Lu	Ht	la	VV	Re	Os	Ir	Pt	Au	Hg		Pb	BI	Ро	At	Rn
132.91 francium	137.33 radium		174.97 Internet um	178,49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bobrium	190.23 bassium	192.22 mathedum	195.08 ununcilium	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	l r	Rf	Db	Sa	Bh	Hs	Mt	Uun	Unu	Uub		Uua				
223	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		289				

Lanthanida corios	larithanum 57	certuni 58	praseoclymium 59	neodymlum 60	promothium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmiuri 67	erblum 68	thulium 69	yttərblum 70
Lanthanite Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
*Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutenium 94	americium 95	curium 96	berkellum 97	californium 98	einsteinium 99	termlum 100	mendelevium 101	nobellum 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	259

Groups/Families

Groups 3 to 12 are called the transition metals.

*Lanthanide series

terbium 65 erbium 68 yttərblum 70 cerium 58 promethiur europiun 63 aadoliniu holmlum 67 thulium neodymlu **Ivsprosit** 59 62 64 60 66 57 61 69 Ce Pr Nd Pm Sm Eu Gd Tb Ho Er Tm Yb La Dv 138.91 140.12 140.91 144.24 [145] 150.36 151.96 157.25 158.93 164.93 167.26 169.93 173.04 actinium californiun thorium plutentum americium berkellum einsteinium termlum mendeleviu nobellum uranium 89 90 91 92 93 94 95 96 97 99 100 101 102 Pa U Pu Bk Th Np Cf Es No Ac Am Cm Fm Md 231.04

* * Actinide series

How Elements Interact

State Objective 2.a.

Physical vs. Chemical Change

Physical change occurs when the physical properties are changed, such as size or shape.

Ex. Folding a piece of paper or a change in the state of matter: solid, liquid, gas

Chemical change occurs when the chemical properties of the substance cause a change producing a new substance (the atoms have rearranged)

Examples of Chemical Reactions

Food spoiling Combustion Rusting Respiration Phc $C_6H_{12}O_6 + O_2$ Res Tar FocCO₂+H₂O + Energy rbon dioxide

Interaction Between Elements:

If there are 110+ elements, how is it possible to have millions of different substances?

- <u>Compounds</u> are substances that form when two or more elements combine from a chemical change.
 - Ex. <u>NaCl</u> (Sodium Chloride)
 - The <u>properties</u> of compounds are different from the properties of the elements that make up the compound
- A <u>molecule</u> is the smallest particle of a substance with the same properties of that substance. Ex. <u>H₂O</u> (water)
 - Each molecule behaves like water, if the molecule is divided, Hydrogen and oxygen no longer behave like <u>water</u>

How do Elements Interact in Chemical Changes?

Chemical properties of elements are determined by the number of <u>electrons</u> in the outer most energy level called <u>valence</u> electrons

Valence electron number is determined by the group number for representative elements

Element Families have similar chemical properties

- Alkali Metals: Group 1; <u>1</u> valence electron
- Alkaline Earth Metals: Group 2; <u>2</u> valence electrons
- Halogens: Group 17; <u>7</u> valence electrons
- Noble Gases: Group 18; <u>8</u> valence electrons

Practice

Use the periodic table to answer the questions.

- 1. How many valence electrons does sodium have?
- 2. How many electrons are found in the electron cloud of an atom of chlorine?
- 3. What is the group number for each of the atomic models below?

Chemical Bonds

- Elements bond to other elements to become <u>stable</u> by having a <u>full</u> valence shell.
 - Most elements need <u>8</u> valence electrons to become stable
- Elements will become stable by losing, gaining, or sharing <u>valence</u> electrons
 - Elements that <u>lose</u> electrons become positively charged ions.
 - Elements that <u>gain</u> electrons become negatively charged ions.
 - Types of bonding:
 - Ionic
 - Covalent

Ionic Bonding

- Ionic bonding is when a strong attraction occurs between <u>oppositely</u> charged ions to hold them close together to become stable (like two magnets)
 - Ion: an atom that no longer has a neutral charge because it has lost or gained an <u>electron</u>
 - Typically between a metal & non-metal
 - ■Ex. <u>Na⁺Cl⁻</u>

Ionic Bonding

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Covalent Bonding

Covalent bonds are chemical bonds that form from atoms that <u>share</u> valence electrons to become stable

Occurs between two or more <u>nonmetals</u>

Ex. H_2 , CI_2 , H_2O , $C_6H_{12}O_6$

Covalent Bonding

Chemical Formulas

Chemical formulas show a combination of chemical symbols & numbers that indicate which elements & how many <u>atoms</u> of each element are present in a compound

H₂O (Water)
C₆H₁₂O₆ (Sugar/glucose)
O₂ (Oxygen Molecule)
CO₂ (Carbon Dioxide)
N₂ (Nitrogen Molecule)

Subscript: # of atoms

Chemical Equations

A process that produces a chemical change is called a chemical reaction.

- Reactants are substances that exist before the reaction begins
- Products are substances that form as a result of the reaction
- Chemical equations tell chemists the reactants, products, and proportions of each substance present in a reaction (like a recipe)

 $\blacksquare Ex. 2H_2 + O_2 \longrightarrow 2H_2O$ **Product**

Reactant

Law of Conservation of Mass

The Law of Conservation of Mass states that mass (matter) can neither be <u>created</u> nor <u>destroyed</u>.

Therefore, <u>atoms</u> are never lost or created during a chemical reaction.

Chemical equations must be <u>balanced</u> in order to show the <u>same</u> number of atoms for each element on the product side of the equation.

C=1

H=4

0=4

Balancing an Equation

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

C=1

H=4

0=4

Chemistry of Matter

Forming Acids & Bases

State Correlation 2b

Properties of Acids & Bases

An <u>acid</u> is a compound that produces <u>hydrogen</u> ions in water (H⁺)

- The greater the concentration of H ions produced, the stronger the acid
 - Tastes sour
 - Reacts with non-metals
 - Have a pH < 7</p>
 - Turn blue litmus paper red
- Examples: HCI, H₂SO₄, HNO₃

Properties of Acids & Bases

A <u>base</u> is any compound that produces <u>hydroxide</u> ions (OH⁻) in water.

- The greater the concentration of OH⁻ produced, the stronger the base.
 - Taste bitter & feels slippery
 - Reacts with metals
 - Have a pH > 7
 - Turn red litmus paper blue

Examples: NH₃, NaOH, NaHCO₃

pH Scale

pH Scale

©NCSSM 2002

Predicting Acids & Bases using the Periodic Table

- Acids form when hydrogen chemically combines with certain <u>nonmetals</u>.
 - All halogens (group 17) form acids when combined with hydrogen
 - Ex. Fluorine & hydrogen (HF)

Predicting Acids & Bases using the Periodic Table

Bases form when a hydroxide ion (OH) joins with a <u>metal</u>

The metals in group 1 (alkali metals) and group 2 (alkaline earth metals) readily form bases with hydroxide ions

- EX. KOH
- EX. Ca(OH)₂

