29. The Organic Chemistry of Metabolic Pathways

- Based on McMurry's Organic Chemistry, 6th edition
- ©2003 Ronald Kluger
- Department of Chemistry
- University of Toronto

29.1 An Overview of Metabolism and Biochemical Energy

- Metabolism: The reactions in organisms
- Catabolism: Pathways that break down larger molecules into smaller ones
 - Usually release energy
- Anabolism: Pathways that synthesize larger biomolecules from smaller ones
 - Usually requires an input of energy

The First Catabolic Stage: Digestion

- Food is broken down by hydrolysis of esters, glycosides, and peptide in the digestive system
- Yields fatty acids, simple sugars, and amino acids
- Smaller molecules are degraded in cells to acetyl groups attached to the large carrier molecule coenzyme A

Coenzyme A

- A complex thiol that transports acyl groups in enzyme reactions
- Most commonly as acetyl derivative
- Derived from pantetheine, a vitamin NH_2 NH_2

Acetyl Coenzyme A

- The acetyl ester of Coenzyme A (acetyl CoA)
- Key substance in numerous other biological pathways

Acetyl CoA-a thioester

© 2004 Thomson/Brooks Cole

Conversion of Food to Energy: Initial Digestion

- Digestion begins with enzymes that break down complex macromolecules
- For example, proteins are converted to peptides and then amino acids
- Complex carbohydrates are broken down to simple sugars
- Fats are hydrolyzed to acids and glycerol

Breakdown of Smaller Molecules

- Sugars and fat components are broken down in steps that lead to formation of acetate
- Some steps are coupled to formation of phosphate anhydrides
- Amino acids are recycled into proteins

Oxidation of Acetyl Groups

- Acetyl groups are oxidized inside cellular mitochondria in the the citric acid cycle to yield CO₂
- The oxidation process releases energy in matched stages
- These reactions are coupled to an electron-transport chain (successive reduction)
- The energy available drives a dehydration reaction that forms to produce molecules of the nucleotide adenosine triphosphate, ATP (shown on the next slide)

Formation of ATP

Energy in electron transport (stepwise oxidation) provides energy for formation of ATP from ADP with elimination of water

The Role of ATP

- Catabolic reactions "pay off" in ATP by synthesizing it
- Anabolic reactions "spend" ATP by transferring the terminal phosphate group while regenerating ADP
- The transfer of phosphate from ATP to water (hydrolysis) gives off energy that can be used for another reaction!

Phosphoric Acid Anhydrides

- Phosphoric acid (H₃PO₄) forms anhydrides through the loss of water between two phosphate units
- This is analogous to carboxylic anhydrides
- A phosphate can form one or two anhydride bonds

ATP and ADP

- ATP is an ester of the linear anhydride of three equivalents of phosphoric acid
- The transfer of the terminal phosphate to an acceptor (including water) is an important part of metabolism
 - Reaction with water produces ADP

Phosphorylation

- ATP reacts with alcohols in enzyme reactions to produce esters of phosphoric acids, called phosphate esters
- The process is called phosphorylation

Metabolic Use of ATP

- An endergonic reaction has a themrodynamic barrier in addition to a kinetic barrier
- Enzymes can cut kinetic barriers only
- Combining the reaction with an exergonic process (hydrolysis of ATP) converts the energetics of the total process
 - The endergonic reaction is "coupled" to an energetically favorable reaction so that the overall free-energy change for the two reactions together is favorable

Phosphorylation of Glucose

- The formation of glucose phosphate from glucose and HPO₄²⁻ is energetically unfavorable: ΔG°' = +13.8 kJ/mol (3.3 kcal/mol)
- The formation of glucose phosphate from ATP is energetically favorable by 16.7 kJ/mol (4.0 kcal/mol)

ATP: the Driver of Biosynthesis

- Enzymes provide a means of coupling an unfavorable reaction to the conversion of ATP to ADP
- The phosphate esters that are formed are intermediates in further processes
- Nature uses phosphates the way chemists use tosylates (to make an OH into a leaving group)

29.2 Catabolism of Fats: β-Oxidation

- Esters in fats are hydrolyzed, releasing fatty acids and glycerol
- The fatty acids are transported to cellular mitochondria and oxidized
- Glycerol is converted to dihydroxyacetone phosphate (DHAP), which enters the carbohydrate metabolic pathway

Writing Metabolic Reactions

- Show the structures of the reactant and product
- Indicate the presence of enzymes and cofactors
- A curved arrow intersecting the usual straight shows a net conversion that is incidental (but essential) to the main reaction
- This type of curved arrow has no relationship to electron flow

Oxidation With NAD⁺

- Enzymes use NAD⁺ as the equivalent of a chemical oxidizing agent to accept the H from the C-H of an alcohol
- The H is transferred as to give NADH as the equivalent of a hydride ion

Stereochemistry of the Transfer of H to NAD⁺

- A single isomer of NADH is produced with the creation of the chirality center that acquires H
- Note that the second hydrogen removed from the oxidized substrate enters the solution as H⁺

Steps in Catabolism of Fatty Acids

- Fatty acids are cleaved and oxidized to a set of acetyl groups (as acetyl CoA)
- This is done in a repeating four-step sequence of enzyme-catalyzed reactions called the β-oxidation pathway
- The acetyl groups are then utilized in the citric acid cycle
- The pathway is summarized in Figure 29.2 in the text
- Note that every step requires an enzyme in order to proceed

β -Oxidation – Introduction of a $\alpha\beta$ Double Bond

- The fatty acid reacts with ATP and CoA to give a fatty acyl CoA
- Hydrogen atoms are removed from carbons 2 and 3 (α and β positions)
- The coenzyme flavin adenine dinucleotide (FAD) is reduced to FADH₂

Stereochemistry of Dehydrogenation

- The pro-R hydrogen is from the α position of the acyl CoA and transferred to the flavin
- The pro-R hydrogen at the β position is transferred to FAD
- The α,β-unsaturated acyl CoA that results has a trans double bond.

Addition of Water

- Water adds to the α,β-unsaturated acyl CoA to yield a β-hydroxyacyl CoA
- Water adds to the β carbon of the double bond
- Hydrogen added at the α position resides in the pro-R site

Oxidation

- The β-hydroxyacyl CoA is oxidized to a β-ketoacyl CoA a dehydrogenase enzyme
- NAD⁺ is the coenzyme and (accepts 2H to form NADH and H⁺)

Acetyl CoA is split off in the reverse of a Claisen condensation reaction (enzyme-catalyzed)

29.3 Catabolism of Carbohydrates: Glycolysis

- A pathway that converts glucose (C₆H₁₂O₆)into two equivalents of pyruvate, CH₃COCO₂⁻
- The reactions are shown in Figure 29.4 of the text

Phosphorylation and Isomerization

- The C₆-OH of glucose is converted to a phosphate ester in a reaction with ATP and an enzyme
- Glucose 6-phosphate is converted to fructose 6phosphate through an enzyme reaction that involes the enol that is common to the reactant and product

Cleavage and Isomerization

- Fructose 6-phosphate (F6P) is converted to fructose 1,6-bisphosphate in a reaction with ATP (the prefix "bis-" means that there two of the item that follows)
- F6P is split into two 3 carbon compounds in a retro (= reverse) aldol reaction

29, 6th edition, (c) 2003

Aldol Cleavage Mechanism

- Fructose 1,6-bisphosphate combines with the sidechain —NH₂ group of a lysine residue on the aldolase enzyme to yield an imine
- This splits the carbon chain into two three carbon species
- Addition of water to the imine regenerates the C=O

Triose Phosphate Isomerase

- Glyceraldehyde 3-phosphate continues on in the glycolysis pathway
- Dihydroxyacetone phosphate is isomerized to glyceraldehyde 3-phosphate takes by keto—enol tautomerization through a common enol

Oxidation and Phosphorylation

- The aldehyde of glyceraldehyde 3-phosphate is oxidized by an enzyme and NAD⁺
- A thiol on the enzyme adds to the aldehyde
- The addition intermediate is oxidized to produce a thioester

Formation of an Acyl Phosphate to Produce ATP

- The thiol is displaced by phosphate, resulting in an acyl phosphate intermediate on the enzyme
- This is at the same energy level as phosphate anhydrides and is used to convert ADP to ATP

Isomerization of 3-Phosphoglycerate

The resulting 3-phosphoglycerate is converted first to 2,3-bisphosphoglycerate and then to 2-phospho-glycerate

Enol Ester Formation

Water is eliminated from 2-phosphoglycerate, producing a phosphate ester of an enol, phosphoenolpyruvate (PEP)

 $\xrightarrow{\text{E2 reaction}} \begin{array}{c} H & O \\ | & \| \\ H & C & C & O^{-} + H_2O \\ | & OPO_3^{2-} \end{array}$

2-Phosphoglycerate (a β-hydroxy carbonyl compound) © 2004 Thomson/Brooks Cole Phosphoenolpyruvate (PEP)

Based on McMurry, Organic Chemistry, Chapter 29, 6th edition, (c) 2003

Formation of ATP from PEP

The terminal phosphate of ADP adds to the phosphate of PEP, producing ATP and pyruvate (catalyzed by pyruvate kinase)

Phosphoenolpyruvate

Pyruvate

© 2004 Thomson/Brooks Cole

The Overall Result of Glycolysis

$$\begin{array}{ccccccc} & & & & & & & & \\ \mathrm{C}_{6}\mathrm{H}_{12}\mathrm{O}_{6} \ + \ 2\ \mathrm{NAD}^{+} \ + \ 2\ \mathrm{HPO}_{4}^{2^{-}} \ + \ 2\ \mathrm{ADP} \ \longrightarrow \ 2\ \mathrm{CH}_{3}\mathrm{C} \ \longrightarrow \ C\mathrm{O}^{-} \ + \ 2\ \mathrm{NADH} \ + \ 2\ \mathrm{ATP} \ + \ 2\ \mathrm{H}_{2}\mathrm{O} \ + \ 2\ \mathrm{H}^{+} \\ \hline \mathbf{Glucose} & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & &$$

29.4 The Conversion of Pyruvate to Acetyl CoA

- In higher organisms, pyruvate is converted to acetyl CoA and CO₂ in the *pyruvate dehydrogenase complex* (steps are shown in Figure 29.5)
- In yeast, pyruvate is converted to ethanol and CO₂ (the basis of making beer, for example)

Thiamine Diphosphate (TDP) Reacts With Pyruvate

- The proton on C2 of the thiazolium ring of TDP dissociates
- The ylide anion at C2 adds to the keto group of pyruvate covalent addition product on the enzyme, lactyl-TDP, which loses CO₂, forming an enamine

ased on McMurry, Organic Chemistry, Chapt 29, 6th edition, (c) 2003

Reaction with Lipoamide

The enamine adds to the cyclic disulfide in lipoamide, resulting in the ring opening through departure of the second S as a thiolate

Lipoamide: Lipoic acid is linked through an amide bond to the side-chain NH₂ group of a lysine residue in dihydrolipoyl transacetylase

© 2004 Thomson/Brooks Cole

Elimination of TDP

 The product of the enamine reaction with lipoamide is the TDP conjugate of acetyl dihydrolipoamide
 Elimination of the ylide of TDP from the conjugate gives acetyl dihydrolipoamide

Acyl transfer

- Acetyl dihydrolipoamide exchanges its thioester for the thiol of coenzyme A to yield acetyl CoA and dihydrolipoamide
- Dihydrolipoamide is oxidized to lipoamide by FAD (FADH₂ is in turn oxidized to FAD by NAD⁺)

29.5 The Citric Acid Cycle

- The eight steps of the citric acid cycle are given in Figure 29.6
- This cycle of reactions converts acetyl CoA to two equivalent of CO₂ and CoA with transfer of energy to numerous acceptors and formation of reduced coenzymes

The Cycle Requires Oxygen

- Oxidizing coenzymes NAD⁺ and FAD are needed for key reduction steps
- The reduced coenzymes NADH and FADH2 are reoxidized via the electron-transport chain
- This relies on oxygen as the ultimate electron acceptor

Steps 1 and 2: Addition to Oxaloacetate

- The carbon of the CH₃ of the acetyl group of acetyl CoA adds to ketone carbonyl group of oxaloacetate to give (S)-citryl CoA
- (S)-Citryl CoA hydrolyzes to citrate and CoA

Conversion of Citrate to Isocitrate

- The isomerization occurs in two steps and is catalyzed by aconitase
- Dehydration of citrate (in the pro-R branch sel) gives cis-aconitate
- Addition of water to cis-aconitate gives isocitrate
- The net effect is a 1,2 shift od the OH

Oxidative Decarboxylation

The OH in isocitrate is oxidized (H⁻ from CH(OH) is transferred to NAD⁺) to C=O (oxalosuccinate)
 Loss of CO₂ gives α-ketoglutarate

Formation of Succinyl CoA from α -Ketoglutarate

- Multi-step process catalyzed by an enzyme complex
- The α-keto acid loses CO₂ in a step with TDP as a cofactor

Hydrolysis and Dehydrogenation of Succinyl CoA

- Succinyl CoA is hydrolyzed to succinate coupled with formation of guanosine triphosphate (GTP) from GDP
- Reaction is via an acyl phosphate

Dehydrogenation of Succinate

- H's are transferred to FAD by succinate dehydrogenase to give fumarate
- Note that the ends of succinate cannot be distinguished

Formation of Malate and Oxaloacetate

- Fumarase catalyzes the addition of HOH to fumarate to give L-malate
- Malate dehydrogenase and NAD⁺ oxidize the C-OH to C=O, forming oxaloacetate, which continues the cycle again

29.6 Catabolism of Proteins: Transamination

- In general the NH₂ is removed first
- This is usually done through transamination in which the —NH₂ group substitutes for the O in a C=O, creating a C=O where the C-NH₂ had been

Pyridoxal Phosphate

- This is a cofactor that is functionally an aldehyde
- It accepts the NH₂, forming an imine
- The conversion of glutamate to α-keto-glutarate is typical
- The mechanism is shown in Figure 29.7

29.7 Fatty-Acid Biosynthesis

- An overview is shown in Figure 29.8
- Note that the anabolic pathway differs from the catabolic pathway in more ways than just being opposite in direction

Fatty-Acid Synthesis Begins WithAcyl Transfers

- The acetyl group of acetyl CoA is transferred to the ACP (acyl carrier protein thioester) via phosphopantetheine (details vary with species)
 The thioester is switched to a cysteine
 - $\underbrace{\begin{array}{c} \mathbf{O} \\ \mathbf{H} \\ \mathbf{CH}_{3}\mathbf{C} \\ -\mathbf{S}\mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{N}\mathbf{H}\mathbf{C}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{H}_{2}\mathbf{N}\mathbf{H}\mathbf{C}\mathbf{C}\mathbf{H}_{2}\mathbf{C}\mathbf{H}_{2}\mathbf{N}\mathbf{H}\mathbf{C}\mathbf{C}\mathbf{H}\mathbf{C}\mathbf{H}_{2}\mathbf{O}\mathbf{P} \\ & \mathbf{H} \\ \mathbf{H}$

Acetyl ACP

© 2004 Thomson/Brooks Cole

Fatty Acid Biosynthesis -Carboxylation and Acyl transfer

- Acetyl CoA is converted to malonyl CoA by replacement of a proton by a carboxyl
- The reaction uses HCO₃⁻ and ATP to yield malonyl CoA plus ADP

Biotin – Coenzyme for Carboxylation Enzymes

- Biotin first reacts with bicarbonate ion to give N-carboxybiotin
- This transfers the CO₂ group

Formation of Malonyl ACP

- The malonyl group is transferred from malonyl CoA to ACP
- This places the malonyl group on an ACP arm of the multienzyme synthase complex
- Acetyl and malonyl groups are bound to the same enzyme

Condensation – the Key Step

Decarboxylation of malonyl ACP gives an enolate ion that adds to the acetyl carbonyl, producing acetoacetyl ACP

Reduction and dehydration

- The C=O in acetoacetyl ACP is reduced to C-OH with NADPH, an analogue of NADH having an additional phosphate
- Dehydration of the β-hydroxy thioester yields transcrotonyl ACP
- The C=C of crotonyl ACP is reduced with NADPH to yield butyryl ACP
- The reaction is repeated until the appropriate length is obtained

29.8 Carbohydrate Biosynthesis: Gluconeogenesis

- The biosynthetic pathway by which organisms make glucose from pyruvate
- The gluconeogenesis pathway is shown in Figure 29.9

Gluconeogenesis Carboxylation(Glucose from Pyruvate)

- Carboxylation of pyruvate yields oxaloacetate
- Requires ATP and biotin as a carrier of CO2

Decarboxylation of Oxaloacetate

Loss of CO₂from the β-ketoacid and phosphorylation of the resultant pyruvate enolate occur concurrently to give phosphoenolpyruvate

Hydration and Isomerization

- Addition of water to the double bond of phosphoenolpyruvate produces 2-phosphoglycerate
- The phosphate migrates from C2 to C3, yielding 3phosphoglycerate

Phosphorylation, reduction, and tautomerization

- 3-Phosphoglycerate and ATP produce an acyl phosphate
- This is reduced with NADH/H⁺ to an aldehyde
- The aldehyde enol gives dihydroxyacetone phosphate

Aldol Condensation: the Formation of a Hexose

- Dihydroxyacetone phosphate and glyceraldehyde 3phosphate combine to give the diphosphate of fructose
- The reaction is an enzymic aldol condensation

Mechanism of the Condensation

Proceeds via an imine from the enzyme

Hydrolysis and Isomerization

- Hydrolysis of the phosphate group at C1
- Keto—enol isomerization produces glucose-6phosphate

29.9 Some Conclusions About Biological Chemistry

- The reactions in metabolism follow the same rules of chemistry that we have learned throughout the course
- Mechanisms are just as important for understanding how biochemistry operates as they are in organic chemistry
 - The ability of enzymes to catalyze reactions under conditions compatible with life is a clear indication that complex and specific processes do not require toxic reagents