Chemistry of a Cell

Macromolecule Notes

Learning Targets

I can...

- **1.** Explain the difference between organic and inorganic compounds
- 2. Describe the structure and function of the 4 main macromolecules: carbohydrates, lipids, proteins, and nucleic acids.

Organic vs Inorganic

- •All substances can be classified as either organic or inorganic.
 - •<u>Organic Compounds</u> contain carbon and are generally associated with living things
 - •Very large compared to inorganic compounds
 - Often contain large amounts of oxygen and hydrogen

Organic vs Inorganic

- OInorganic Compounds anything NOT considered organic
 - •May be metals or nonmetals, pure substances or compounds
 - **O**Have many different uses based on properties
 - EX: water, salts, and other minerals all play an important role in how your body functions

Carbon and Organic Molecules

- Carbon atoms form the backbone of many molecules that make up biological systems on Earth
 - <u>Biological Molecules</u> made up of chains of carbon atoms bonded to individual atoms of hydrogen, oxygen, nitrogen, or sulfur
 - Groups of atoms known as functional groups can be present that give molecules specific properties

Carbon and Organic Molecules

• Why carbon?!

- Carbon is a small, less-bulky atom that bonds easily to other atoms
- Carbon has 4 valence electrons which allows it to bond with up to 4 other elements

 Can also create double and triple bonds making it more versatile

Key Elements

- Element a type of matter composed of only one kind of atom which cannot be broken down into a simpler structure
- **O6** Elements Commonly Found in Cells:
 - **O** Sulfur (S)
 - Phosphorus (P)
 - Oxygen (O)
 - Nitrogen (N)
 - OCarbon (C)
 - OHydrogen (H)

Organic Molecules

- More than 90% of all known chemical compounds are organic in nature
 - Small carbon-containing molecules can link together to form a variety of larger molecules that are essential for life
 - When forming compounds, carbon atoms can bond to one another in chains, rings, and branching networks

Complex Organic Molecules

- Biological molecules are composed of small repeating subunits that form larger molecules
 - Monomer: subunit, or building block, of organic compounds
- 4 Basic Categories of Complex Organic Molecules:
 - Proteins
 - Carbohydrates
 - Lipids
 - Nucleic Acids

Carbohydrates

- Carbohydrate often called sugars and are an *immediate* energy source
- Structurally, they are chains of carbon units with hydroxyl groups (-OH) attached
- Simplest = monosaccharides
- Disaccharides = 2 monomers
- Oligosaccharides = 3-10
- Polysaccharides = 10+

Lipids

- O Lipids fats, oils, and waxes
- Structure made up of chains of methyl (-CH) units
 - O Chains may be long or short, straight or rings
- Function most well known is fat that stores energy
 - Also used to make up cell membranes

Nucleic Acids

- Nucleic Acids found in the nucleus of a cell
- Made up of a *nucleotide* monomer
 - Consists of a sugar, phosphate group, and a nitrogenous base
 - 2 Main Types:
 - RNA ribonucleic acid – involved in the production of proteins
 - DNA deoxyribonucleic acid – stores genetic info

Proteins

- O Proteins consist of long, linear chains of polypeptides
- 20 standard amino acids combine to form every protein needed by the human body
 - Examples: structural proteins, regulatory proteins, contractile proteins, transport proteins, storage proteins, protective proteins, membrane proteins, and enzymes
- O The make up of the protein's unique side chain determines the final structure of the protein
 - Side chains can be linear, branched, or ring-shaped
 - Interactions of side chains determines 3D shape
- Structure determines function of protein
- Must eat protein in order to gain the amino acids NOT made by the body

Visual Review

Take out each item in your provided bag
Determine which item represents each macromolecule (carbohydrate, lipid, protein, and nucleic acid). Write this down on your note guide

Tell <u>WHY</u> you think that represents each
BE PREPARED TO BE CALLED ON!

Section Review Questions

Using the *Quality Core Biology End-of-Course Assessment Book* complete the following questions:
 P.107

• Part B & C

Section Review Questions

OB.

- 1. Carbon chains are principal feature of both carbohydrates and lipids. What is the primary difference between these two types of biomolecules?
 - •B Carbohydrates carry hydroxyl groups on their carbon backbone
- 2. What molecule makes up the bulk of a cell?
 D Water
- 3. Carbon is important to living things because
 C It can form four covalent bonds with other atoms
 4. Nucleotides are to nucleic acids as amino acid are to
 - •C Proteins

Section Review Questions

OC

- 1. All living things have a common tie with the Earth on which we live. Explain why this is true.
 - •All living things are made up of carbon which is found in the make up of Earth as well
- 2. What are the 6 elements commonly found in living things?

 Sulfur, Phosphorus, Carbon, Hydrogen, Nitrogen, Oxygen

O 3. Why is carbon important to living things?
 O It can create 4 bonds with other elements create very stable and complex molecules