### **Boyle's Law**

If n and T are constant, then

PV = k

This means, for example, that **Pressure** *goes up* as **Volume** *goes down*.

A bicycle pump is a good example of Boyle's law.

As the volume of the air trapped in the pump is reduced, its pressure goes up, and air is forced into the tire.



**Robert Boyle** (1627 - 1691)

Son of Earl of Cork, Ireland.



P = 1 atm



V = 1 LT = 298 K

P = 2 atm

V = 0.50 LT = 298 K

P = 4 atm



V = 0.25 LT = 298 K



#### Pressure vs. Volume for a Fixed Amount of Gas (Constant Temperature)



## Boyle's Law



Ρ

The pressure and volume of a gas are inversely related at a co ture.  $\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$ 

#### Pressure and Volume of a Gas Boyle's Law

A quantity of gas under a pressure of 106.6 kPa has a volume of 385 L. What is the volume of the gas at standard pressure(1 atm), if the temperature is held constant?

 $P_1 \times V_1 = P_2 \times V_2$ 

 $(106.6 \text{ kPa}) \times (385 \text{ L}) = (101.3 \text{ kPa}) \times (V_2)$ 

 $V_2 = 405.14 L = 405L$ 

# Boyle's Law

A quantity of gas has a volume of 120 L when confined under a pressure of 93.3 kPa. At what pressure will the volume of the gas be 30.0 L?

$$P_1 \times V_1 = P_2 \times V_2$$

 $(93.3 \text{ kPa}) \times (120 \text{ L}) = (P_2) \times (30.0 \text{ L})$ 

 $P_2 = 373.2 \text{ kPa} = 370 \text{ kPa}$