PowerPoint[®] Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY

NINTH EDITION

ELAINE N. MARIEB

Basic Chemistry

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Biochemistry: Essentials for Life

Organic compounds

- Contain carbon
- Most are covalently bonded
- Example: C₆H₁₂O₆ (glucose)
- Inorganic compounds
 - Lack carbon
 - Tend to be simpler compounds
 - Example: H₂O (water)

Important Inorganic Compounds

- Water
 - Most abundant inorganic compound
 - Vital properties
 - High heat capacity
 - Polarity/solvent properties
 - Chemical reactivity
 - Cushioning

Important Inorganic Compounds

- Salts
 - Easily dissociate into ions in the presence of water
 - Vital to many body functions
 - Include electrolytes which conduct electrical currents

Dissociation of a Salt in Water

Figure 2.11

Important Inorganic Compounds

- Acids
 - Release hydrogen ions (H⁺)
 - Are proton donors
- Bases
 - Release hydroxyl ions (OH⁻)
 - Are proton acceptors
- Neutralization reaction
 - Acids and bases react to form water and a salt

рΗ

- Measures relative concentration of hydrogen ions
 - pH 7 = neutral
 - pH below 7 = acidic
 - pH above 7 = basic
 - Buffers—chemicals that can regulate pH change

Important Organic Compounds

- Carbohydrates
 - Contain carbon, hydrogen, and oxygen
 - Include sugars and starches
 - Classified according to size
 - Monosaccharides—simple sugars
 - Disaccharides—two simple sugars joined by dehydration synthesis
 - Polysaccharides—long-branching chains of linked simple sugars

Carbohydrates

(a) Simple sugar (monosaccharide)

(b) Double sugar (disaccharide)

Figure 2.13a-b

Carbohydrates

(c) Starch (polysaccharide)

Figure 2.13c

Carbohydrates

Figure 2.14

Important Organic Compounds

- Lipids
 - Contain carbon, hydrogen, and oxygen
 - Carbon and hydrogen outnumber oxygen
 - Insoluble in water

Lipids

Common lipids in the human body

- Neutral fats (triglycerides)
 - Found in fat deposits
 - Composed of fatty acids and glycerol
 - Source of stored energy

Figure 2.15a

Lipids

- Common lipids in the human body (continued)
 - Phospholipids
 - Form cell membranes
 - Steroids
 - Include cholesterol, bile salts, vitamin D, and some hormones

(b) Phospholipid molecule (phosphatidylcholine)

Figure 2.15b

Lipids

Cholesterol

The basis for all steroids made in the body

Figure 2.15c

Important Organic Compounds

- Proteins
 - Made of amino acids
 - Contain carbon, oxygen, hydrogen, nitrogen, and sometimes sulfur

Figure 2.16

Account for over half of the body's organic matter

- Provide for construction materials for body tissues
- Play a vital role in cell function
- Act as enzymes, hormones, and antibodies

Amino acid structure

- Contain an amine group (NH₂)
- Contain an acid group (COOH)
- Vary only by R groups

- Fibrous proteins
 - Also known as structural proteins
 - Appear in body structures
 - Examples include collagen and keratin
 - Stable

(a) Triple helix of collagen (a fibrous or structural protein).

Figure 2.17a

- Globular proteins
 - Also known as functional proteins
 - Function as antibodies or enzymes
 - Can be denatured

(b) Hemoglobin molecule composed of the protein globin and attached heme groups. (Globin is a globular or functional protein.)

Figure 2.17b

Enzymes

- Act as biological catalysts
- Increase the rate of chemical reactions

Figure 2.18a

Figure 2.18b

Important Organic Compounds

- Nucleic Acids
 - Provide blueprint of life
 - Nucleotide bases
 - A = Adenine
 - **G** = Guanine
 - C = Cytosine
 - T = Thymine
 - U = Uracil

Make DNA and RNA

Nucleic Acids

- Deoxyribonucleic acid (DNA)
 - Organized by complimentary bases to form double helix
 - Replicates before cell division
 - Provides
 instructions for
 every protein in the
 body

Figure 2.19c

Important Organic Compounds

- Adenosine triphosphate (ATP)
 - Chemical energy used by all cells
 - Energy is released by breaking high energy phosphate bond
 - ATP is replenished by oxidation of food fuels

Adenosine Triphosphate (ATP)

(a) Adenosine triphosphate (ATP)

Figure 2.20a

muscle cell

(b) Mechanical work

