Carbon cycle theme

- The Earth's carbon cycle has a stabilizing mechanism against sudden addition of CO₂ to the atmosphere
 - About 50% of carbon emission is absorbed into land and ocean surfaces
 - Climate warming would be twice as severe if there were no such carbon sink
 - Ocean carbon uptake is helpful but it comes with certain consequences: ocean acidification

Henry's Law

Low Gas Pressure

High Gas Pressure

At equilibrium: $[CO_2]_{ocean} = K_0 \times pCO_2^{atm}$

Where K₀ the solubility constant for CO₂ and increases with decreasing temperature and salinity

$$pCO_2^{oce} = [CO_2]_{ocean} / K_0$$

At equilibrium:

$$pCO_2^{oce} = pCO_2^{atm}$$

If pCO₂^{oce} < pCO₂^{atm}, net transfer of CO₂ into ocean If pCO₂^{oce} > pCO₂^{atm}, net transfer of CO₂ out of ocean²

Ocean carbon cycle (2)

$$CO_2 + CO_3^{2-} + H_2O \longrightarrow 2HCO_3^{-}$$

Carbonate chemistry

• DIC =
$$[CO_2^*] + [HCO_3^-] + [CO_3^2]$$

What is pH?

- $pH = -log_{10}[H^+]$
 - Lower pH value indicate increasing acidity

- Notation: $pX = -log_{10}X$
 - Potential of X
 - Logarithmic scale: If pH decreases by 1, it's a factor of ten increase in acidity

рН	H+ (moles per liter)	change in acidit
7.2	6.3 x 10 ⁻⁸	+900%
7.3	5.0 x 10 ⁻⁸	+694%
7.4	4.0 x 10 ⁻⁸	+531%
7.5	3.2 x 10 ⁻⁸	+401%
7.6	2.5 x 10 ⁻⁸	+298%
7.7	2.0 x 10 ⁻⁸	+216%
7.8	1.6 x 10 ⁻⁸	+151%
7.9	1.3 x 10 ⁻⁸	+100%
8.0	1.0 x 10 ⁻⁸	+58%
8.1	7.9 x 10 ⁻⁹	+26%
8.2	6.3 x 10 ⁻⁹	

^{*} Average global surface ocea

What controls the pH of seawater?

- lons in the seawater
 - Cations and anions
 - Na⁺, Mg²⁺, Ca²⁺, K⁺, Cl⁻, F⁻, SO₄²⁻, NO₃⁻, HCO₃⁻, CO₃

 ²⁻, H⁺, OH⁻, B(OH)₄⁻, etc...

Charge balance

- The charge-weighted sum of positively and negatively charged ions must be zero.
- Alkalinity
 - The net positive charge from strong ions

Definition of Alkalinity

Alkalinity: is the net molar concentration, in chargeequivalents, of the cations of strong bases in excess of the anions of strong acids

Strong base cations
$$A = \left\{ [Na^+] + [K^+] + 2[Mg^{2+}] + 2[Ca^{2+}] \right\} -$$

(less) strong acid anions

$$\left\{ [Cl^{-}] + 2[SO_4^{2-}] + [Br^{-}] \right\}$$

$$\approx \left\{ [HCO_3^-] + 2[CO_3^{2-}] \right\}$$

Weak acid anions

Approximate relation

$$Alk \approx \left\{ [HCO_3^-] + 2[CO_3^{2-}] \right\}$$

$$DIC \approx \left\{ [HCO_3^-] + [CO_3^{2-}] \right\}$$

$$[CO_3^{2-}] \approx Alk - DIC$$

• DIC =
$$[CO_2^*] + [HCO_3^-] + [CO_3^2]$$

• Alk =
$$[HCO_3^-] + 2[CO_3^{2-}]$$

FAQs about Ocean Acidification

https://www.whoi.edu/page.do?pid=83380&tid=3622&cid=131410

Carbon Pumps

- Solubility pump
- Soft-tissue pump
- Carbonate pump
- Biological Pump

Air-sea carbon exchange

Note: positive upward

Takahashi et al., (2009)

Into the ocean

Out of the ocean

 $\Delta pCO_2 = pCO_2^{ocean} - pCO_2^{atm}$ When > 0 outgassing of CO_2 from the Ocean, when < 0 invasion of CO_2 into the ocean

- Timescale for CO₂ equilibration is about 10X longer for ordinary gas and surface ocean is not in equilibrium with atmosphere.
- pCO₂^{ocean} is high where cold waters are warmed, and where carbon rich deep waters are exposed to the surface
- pCO₂ocean is low where warm waters are cooled
- At steady state, for entire ocean pCO₂ocean =pCO₂atm

Air sea heat and carbon flux

Carbon Pumps

- Solubility pump
- Soft-tissue pump
- Carbonate pump

Biological Pump

Carbonate pump

- Carbon is taken up to form CaCO₃ shells in surface ocean
- The CaCO₃ dissolves in the deep ocean

Carbon Pumps

- Solubility pump
- Soft-tissue pump
- Carbonate pump
- Biological Pump

Biological (soft-tissue) pump

- Organisms take up carbon during photosynthesis in the surface ocean
- When they die they sink into the deep ocean
- The carbon is returned to seawater when the organic material is broken down by bacteria

Primary production

 Photosynthesis measured by the amount of carbon molecule in the newly generated organic matter

```
(Solar radiation) + Nutrient + CO<sub>2</sub> + Water

→ Organic matter + O<sub>2</sub>
```

Vertical transfer of carbon

Export production

- Sinking organic matter
- Sinking speed depends on particle sizes and density
 - Particle sizes depends on ecosystem structure

About 10% of primary production gets exported to the deep ocean

Biological pump

What regulates the strength of biological carbon pump?

Redfield ratio

 Average composition of organic matter in typical marine snow

 $P: N: -O_2: C_{org} = 1:16:170:106$

N:P ratio of seawater

Tyrell (1999)

Controls on biological pump

- Bottom up control: availability of nutrients (PO₄, NO₃)
 - Ocean nutrient inventory
 - Supply of nutrients to the surface ocean by ocean upwelling and mixing
- Top-down control
 - Predators can limit prey population
 - Ecosystem processes

Remineralization

- Sinking organic matter is consumed by bacteria
 - Regeneration of nutrients, DIC
 - Consumption of oxygen

A model of the vertical overturning circulation

Distribution of nutrients vs DIC

Nitrate: NO₃ DIC

Air-sea CO₂ flux driven by the biological pump

