Basic Chemistry and Naming Conventions for Per- and Polyfluoroalkyl Substances (PFAS)

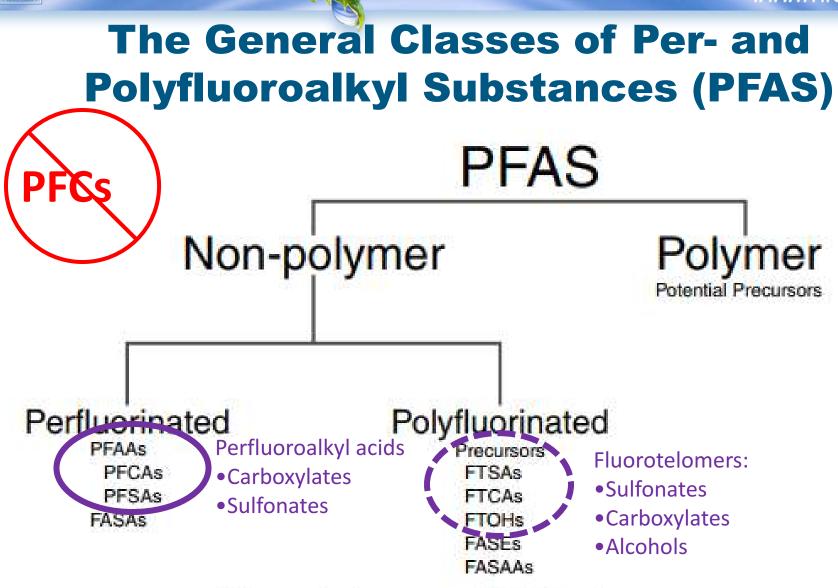
Ginny Yingling Minnesota Dept. of Health

Advancing Environmental Solutions

WWW.ITRCWEB.ORG

Advancing Environmental Solutions www.ITRCWEB.ORG

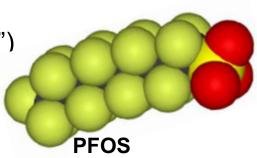
What Are Per- and Polyfluoroalkyl Substances (PFAS)?


- Large class of surfactants (>3,000?) with unique chemical & physical properties that make many of them extremely persistent and mobile in the environment
- Used since 1940s in wide range of consumer and industrial applications

2

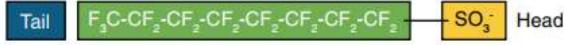
Advancing Environmental Solutions www.ITRCWEB.ORG

Source: ITRC Naming Conventions and Physical Chemical Properties factsheet


Advancing Environmental Solutions www.ITRCWEB.ORG

Basic PFAA Structure

Perfluoroalkyl Acids (PFAAs)


Fully fluorinated chain (2 or more carbon "tail")

- Functional group ("head")
 - PFCAs: Carboxylate group (COO⁻)
 - **PFSAs**: Sulfonate group (SO₃⁻)

Source: open access image from bing.com

Perfluorooctane carboxylate (PFOA)

Source: ITRC Naming Conventions and Physical 4 Chemical Properties factsheet

Perfluorooctane sulfonate (PFOS)

PFAA Naming System

- PFXY
 - PF = perfluoro
 - X = number of carbons
 - Same convention as hydrocarbons
 - Includes the "C" in the carboxylate group
 - Y = functional group
 - S = sulfonate
 - A = carboxylate
- Example:
 - X: 8 carbons = "octa"
 - Y: S = sulfonate

X Y		Acronym	Name	Formula	CAS No.
B = buta (4 carbon)	A = Carboxylate or	DEDA	Perfluorobutanoate	C ₃ F ₇ CO ₂ ⁻	45048-62-2
	carboxylic acid	PFBA	Perfluorobutanoic acid	C ₃ F,COOH	375-22-4
	S = Sulfonate or		Perfluorobutane sulfonate	C ₄ F ₉ SO ₃ -	45187-15-3
	sulfonic acid	PFBS	Perfluorobutane sulfonic acid	C₄F₅SO₃H	375-73-5
Pe = penta (5 carbon)	A = Carboxylate or		Perfluoropentanoate	C4F9CO2	45167-47-3
	carboxylic acid	PFPeA	Perfluoropentanoic acid	C₄F ₉ COOH	2706-90-3
	S = Sulfonate or	PFPeS	Perfluoropentane sulfonate	C ₅ F ₁₁ SO ₃	NA
	sulfonic acid		Perfluoropentane sulfonic acid	C ₅ F ₁₁ SO ₃ H	2706-91-4
Hx = hexa (6 carbon)	A = Carboxylate or carboxylic acid	PFHxA	Perfluorohexanoate	C5F11CO2	92612-52-7
			Perfluorohexanoic acid	CsF11COOH	307-24-4
	S = Sulfonate or	PFHxS	Perfluorohexane sulfonate	C ₆ F ₁₃ SO ₃ ⁻	108427-53-8
	sulfonic acid		Perfluorohexane sulfonic acid	C ₆ F ₁₃ SO ₃ H	355-46-4
Hp = hepta (7 carbon)	A = Carboxylate or carboxylic acid	PFHpA -	Perfluoroheptanoate	C ₆ F ₁₃ CO ₂ -	120885-29-2
			Perfluoroheptanoic acid	C ₆ F ₁₃ COOH	375-85-9
	S = Sulfonate or	DELLO	Perfluoroheptane sulfonate	C7F15SO3-	NA
	sulfonic acid	PFHpS	Perfluoroheptane sulfonic acid	C ₇ F ₁₅ SO ₃ H	375-92-8
O = octa (8 carbon)	A = Carboxylate or carboxylic acid	PFOA	Perfluorooctanoate	C7F15CO2	45285-51-6
			Perfluorooctanoic acid	C7F15COOH	335-67-1
	S = Sulfonate or	DEOO	Perfluorooctane sulfonate	C ₈ F ₁₇ SO ₃ -	45298-90-6
	sulfonic acid	PFOS	Perfluorooctane sulfonic acid	C ₈ F ₁₇ SO ₃ H	1763-23-1
N = nona (9 carbon)	A = Carboxylate or carboxylic acid	PFNA	Perfluorononanoate	C8F17CO2	72007-68-2
			Perfluorononanoic acid	C ₈ F ₁₇ COOH	375-95-1
	S = Sulfonate or	PFNS -	Perfluorononane sulfonate	C ₉ F ₁₉ SO ₃ ⁻	NA
	sulfonic acid		Perfluorononane sulfonic acid	C ₉ F ₁₉ SO ₃ H	474511-07-4
D = deca (10 carbon)	A = Carboxylate or	PFDA	Perfluorodecanoate	C ₉ F ₁₉ CO ₂ -	73829-36-4
	carboxylic acid		Perfluorodecanoic acid	C ₉ F ₁₉ COOH	335-76-2
	S = Sulfonate or	PFDS	Perfluorodecane sulfonate	C10F21SO3	126105-34-8
	sulfonic acid	PFUS	Perfluorodecane sulfonic acid	C ₁₀ F ₂ 1SO ₃ H	335-77-3

Source: ITRC Naming Conventions and Physical 6 Chemical Properties factsheet

Wait...Which PFAA Are We Talking About?

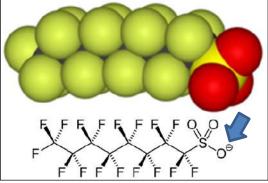
Acid or Anion?

- PFAS may exist in many ionic states (acids, anions, cations, zwitterions)
- In the environment, most PFAAs exist in the anionic state (sulfonate, carboxylate, etc.)
- Acid form of the name often used interchangeably (sulfonic acid and carboxylic acid)
- Different CAS numbers & very different chemical and physical properties
- What Is The Lab Really Testing For?
 - Some labs report some or all PFAAs in the acid form
 - Depends on the standards used, which may be acids or salts of the PFAA (typically Na⁺ or K⁺)
 - The lab performs a calculation to account for the mass of the cation
 - For H+ in acids, this is essentially irrelevant in terms of the results
 - For salts, confirm the lab is accurately accounting for the cation mass (Section 7.2.3 of EPA Method 537)

Published Physical & Chemical Values

- Most values reported in the literature are for PFAA acids
 - PFAA acids not typically present in environment except at pH <3</p>
 - Behavior of acids and anions are often VERY different
 - PFOA acid: low solubility, volatile / PFOA anion: highly soluble, non-volatile

Properties								Environmentally Relevant?
PFAA State	CAS No.	Sw	P°	K _h	K _{ow}	K _{oc}	BCF and/or BAF	
Acid	Y	Y	Y	E	Е	E	N	No
Cation:				-				
NH_4^+	Y	Y	N	N	N	N	Ν	No
Li+	Y	Y	N	N	N	N	Ν	
Na ⁺	Y	Y	Ν	N	N	N	N	
Anion	М	N	N	N	N	Y	Y	Yes


 S_w = solubility in water K_{oc} = org. carbon partition coefficient Y = data available P^o = vapor pressure BAF = bioaccumulation factor N = no data available K_h = Henry's Law constant BCF = bioconcentration factor M = data may be available K_{ow} = octanol/water partition coefficient E = estimated

Source: ITRC Naming Conventions and Physical 8 Chemical Properties factsheet

Highlights of PFAS Properties

- C-F is the shortest and strongest bond in chemistry
 - Small, highly electronegative fluorine atoms "shield" the carbon from chemical reactions
 - No biotic or abiotic degradation of PFAA under natural conditions
 - PFAAs thermally degrade only at high temperatures
- Perfluoroalkyl acids (PFAAs) are negatively charged
 - Interact and sorb on positively charged minerals
 Mediated by pH, chain length, and functional group

Source: open access image - bing.com

High C-F Bond Energy

-	
kJ/mol of bonds	
C-F 485	
C-H436	
C-C346	
C-Cl 339	
C-N305	
C-Br285	
C-S272	

Highlights of PFAS Properties

Surfactant properties are important

- Partitioning to interfaces (air-water, soil-water, NAPL-water) & micelles
- PFCAs can be both hydrophobic & hydrophilic
- Chain length and functional group generally determine bioaccumulation
 - Longer chain and sulfonates tend to accumulate more than shorter chain and carboxylates
 - Some PFAS are "proteinphiles", so bioaccumlation process may be more complicated than for other environmental contaminants.
 - PFHxS breaks this "rule" longer half-life in humans than PFOS

Highlights of PFAS Properties

PFAAs generally have low volatility

- Air transport may occur for PFAAs sorbed to particulates or dissolved in water droplets
- May be formed from volatile precursors (e.g. FTOHs)

PFAAs may be linear or branched in form

May affect partitioning and/or bioaccumulation - not well understood yet

F₃C-CF₂-CF₂-CF₂-CF₂-CF₂-CF₂-SO₃⁻ Linear Perfluorooctane sulfonate (PFOS)

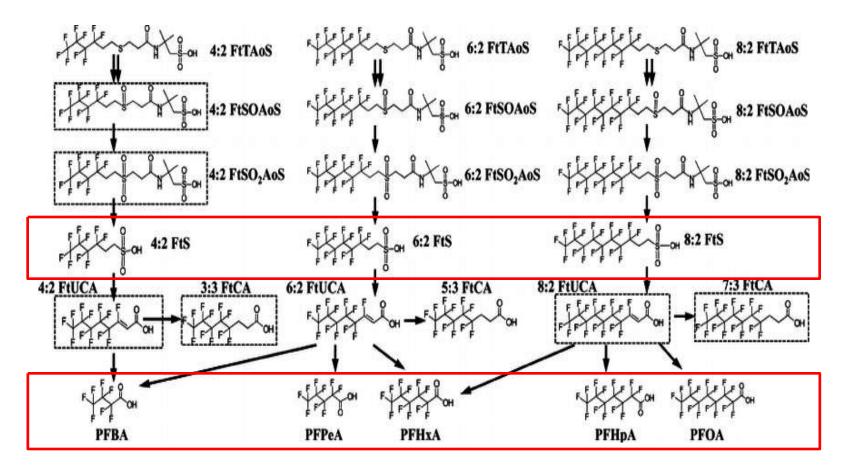
```
CF<sub>3</sub>
F<sub>3</sub>C-CF-CF<sub>2</sub>-CF<sub>2</sub>-CF<sub>2</sub>-CF<sub>2</sub>-SO<sub>3</sub>
Branched Perfluorooctane sulfonate (PFOS)
```


Polyfluorinated Substances

Partially fluorinated

- Non-fluorine atom (usually H or O) attached to at least one, but not all, of the carbon atoms in the "tail"
- Creates a "weak link" susceptible to biotic or abiotic degradation
- Often named using a "n:x" prefix
 - n = number of fully fluorinated carbons
 - x = number of non-fully fluorinated carbons

PFAA Precursors

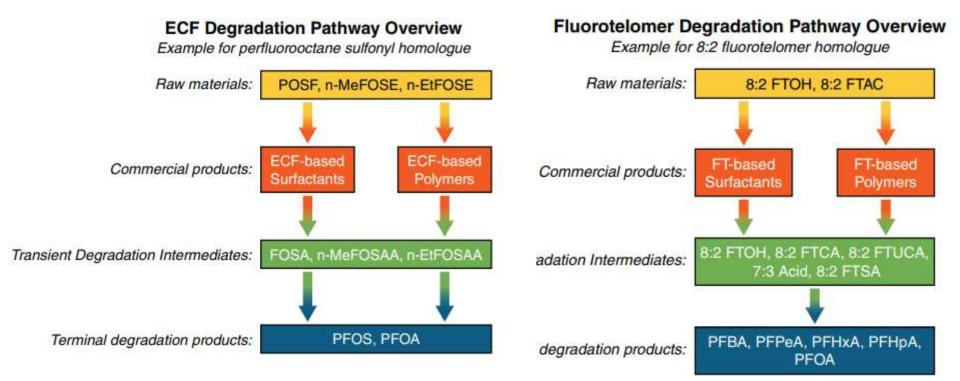

Some polyfluorinated PFAS can degrade to PFAAs

- Referred to as "PFAA precursors"
- Non-fluorine atom(s) attached to one or more carbons in the "tail" create a "weak link"
- Resulting PFAAs sometimes referred to as "terminal perfluoroalkyl acids"
- Some are cationic (+ charge) or zwitterionic (mixed charges) less mobile than anionic PFAAs, so may be retained longer in source areas

Perfluoroalkane sulfonamides (FASAs) May degrade to PFSAs Polyfluoroalkyl Substances Fluorotelomers Fluorotelomer alcohols (FTOH) May degrade to PFCAs Fluorotelomer sulfonates (FTSA) Fluorotelomer carboxylates (FTCA) Perfluoroalkyl sulfonamido ethanols (FASE) & acetic acids (FASAA) May degrade to PFCAs or PFSAs

Precursor Biotransformation

Can be analyzed using USEPA 537 Mod


Figure 4 from Harding-Marjanovic et al., 2015

Reprinted with permission from Harding-Marjanovic, et al. 2015. Aerobic biotransformation of fluorotelomer thioether amido sulfonate (lodyne) in AFFF-amended microcosms. Env. Sci. & Tech., 49(13):7666-7674. Copyright 2015 American Chemical Society

Advancing Environmental Solutions WWW.ITRCWEB.ORG

ECF vs Telomerization Origin Predicts Degradation Products

Source: ITRC Naming Conventions and Physical 15 Chemical Properties factsheet

Questions?

WWW.ITRCWEB.ORG

Advancing Environmental Solutions