

William L Masterton Cecile N. Hurley Edward J. Neth

cengage.com/chemistry/masterton

Chapter 4 Reactions in Aqueous Solution

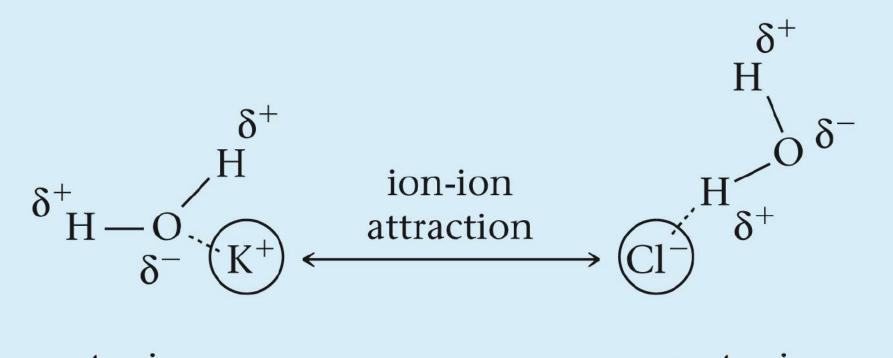
Edward J. Neth • University of Connecticut

Outline

- Precipitation Reactions
- Acid-Base Reactions
- Oxidation-Reduction Reactions

Solubility of Ionic Compounds in Water

- When an ionic compound dissolves in water, two forces compete
 - The attractive forces between the ions in the compound
 - The attractive forces between the water and the ions


- If the force of attraction between water molecules and the ions predominates, the compound will be soluble in water
- If the force of attraction between the ions in the compound predominates, the compound will be insoluble in water

Precipitation

- Precipitation in chemical reactions is the formation of a solid where no solid existed before reaction
- Precipitation is the reverse of solubility, where a solid dissolves in a solvent to produce a solution

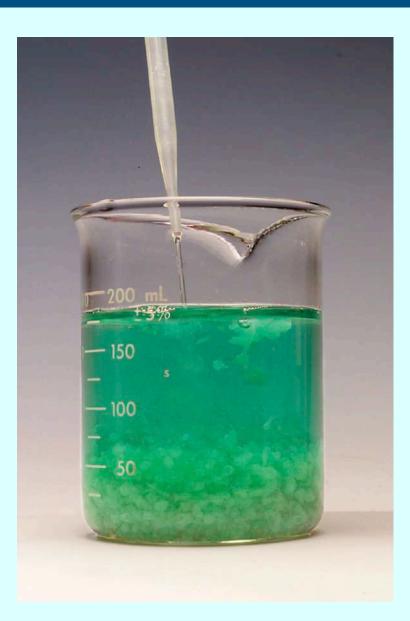
Figure 4.1: Attractive Forces and Solubility

water-ion attraction

water-ion attraction

Will it Dissolve?

- Solubility cannot be determined by first principles
- Solubility can be classified by anion and cation type
 - Soluble compounds dissolve in water
 - Insoluble compounds do not dissolve


Precipitates

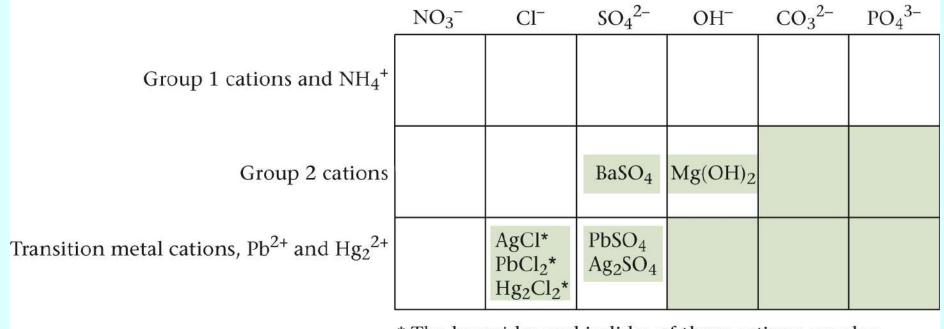
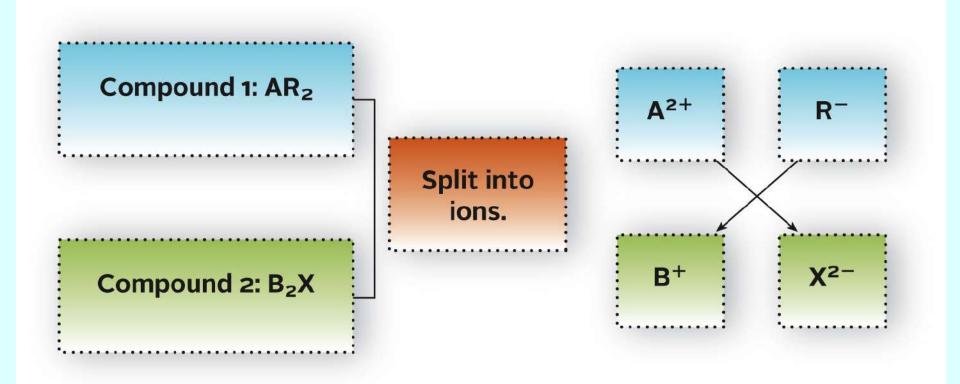

- Precipitates are called *insoluble* they do not dissolve in solution
- Precipitation of an insoluble solid
 - Mix a solution of nickel(II) chloride with one of sodium hydroxide
 - A solid forms: Ni(OH)₂ (s)

Figure 4.4: Nickel Hydroxide

Figure 4.2 – Precipitation Diagram

* The bromides and iodides of these cations are also insoluble.

- From the diagram, we see that some compounds are mostly soluble
 - Compounds of Group 1 and NH_4^+ cations
 - All nitrates
 - Most chlorides, except for AgCl, PbCl₂, Hg₂Cl₂
 - Most sulfates, except for BaSO₄, PbSO₄, Ag₂SO₄



- Some compounds are *mostly insoluble*
 - Carbonates and phosphates, except for the Group I and ammonium
 - Hydroxides, except for the Group 1, Group 2 and ammonium
 - Mg(OH)₂ is insoluble

Working Solubility Problems

- By knowing the rules expressed in Figure 4.2, we can predict what mixtures will precipitate, and what compounds will form

Figure 4.3: Flowchart for Solubility Determination

EXAMPLE 4.1

Predict what will happen when the following pairs of dilute aqueous solutions are mixed.

(a) $Cu(NO_3)_2$ and $(NH_4)_2SO_4$ (b) FeCl₃ and AgNO₃

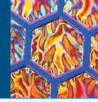
STRATEGY

- **1.** Follow the schematic diagram in Figure 4.3.
- 2. Use the precipitation diagram (Figure 4.2) to determine whether or not the possible precipitates are soluble.

SOLUTION

(a) Ions in solution	Cu^{2+} and NO_3^- from $Cu(NO_3)_2$; NH_4^+ and SO_4^{2-} from $(NH_4)_2SO_4$	
Possible precipitates	CuSO ₄ and NH ₄ NO ₃	
Solubility	Both are soluble, no precipitate forms	
(b) Ions in solution	Fe ³⁺ and Cl ⁻ from FeCl ₃ ; Ag ⁺ and NO ₃ ⁻ from AgNO ₃	
Possible precipitates	AgCl and $Fe(NO_3)_3$	
Solubility	Fe(NO ₃) ₃ is soluble, AgCl is insoluble. AgCl precipitates.	

Net Ionic Equations


- Consider the precipitation of CaCO₃ from solutions of CaCl₂ and Na₂CO₃
 - Reactants: Ca²⁺, Cl⁻, Na⁺ and CO₃²⁻
 - Products: CaCO₃, Na⁺ and Cl⁻
 - Two of the ions are unchanged
 - These are spectator ions
 - Net ionic equation: leave out the spectator ions
 - $Ca^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CaCO_3(s)$

Net Ionic Equations

- Must follow the rules for equations
 - Atoms must balance
 - Charges must balance
 - Show only the ions that react

Example 4.2

EXAMPLE 4.2

Write a net ionic equation for any precipitation reaction that occurs when dilute solutions of the following ionic compounds are mixed.

(a) NaOH and Cu(NO₃)₂ (b) Ba(OH)₂ and MgSO₄ (c) $(NH_4)_3PO_4$ and K_2CO_3

STRATEGY

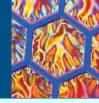
1. Follow the plan:

```
Figure 4.3: compound \rightarrow ions \rightarrow possible precipitates
```

possible precipitates \rightarrow (Figure 4.2) \rightarrow insoluble compound \rightarrow net ionic equation

2. In writing the net ionic equation, start with the insoluble compound on the right, then write the component ions on the left. Do not forget the physical states: ions (*aq*), product (*s*).

	SOLUTION	
(a) Ions in solution Possible precipitates	Na ⁺ and OH ⁻ from NaOH; Cu^{2+} and NO_3^- from $Cu(NO_3)_2$ NaNO ₃ and $Cu(OH)_2$	
Solubility	NaNO ₃ is soluble; $Cu(OH)_2$ is insoluble.	
Net ionic equation	$\operatorname{Cu}^{2+}(aq) + 2\operatorname{OH}^{-}(aq) \longrightarrow \operatorname{Cu}(\operatorname{OH})_2(s).$	continued


SOLUTION			
(b) Ions in solution	Ba^{2+} and OH ⁻ from $Ba(OH)_2$; Mg ²⁺ and SO ₄ ²⁻ from MgSO ₄		
Possible precipitates	Mg(OH) ₂ and BaSO ₄		
Solubility	Both $BaSO_4$ and $Mg(OH)_2$ are insoluble.		
Net ionic equation	$Mg^{2+}(aq) + 2 OH^{-}(aq) \rightarrow Mg(OH)_2(s)$		
	$\operatorname{Ba}^{2+}(aq) + \operatorname{SO}_4^{2-}(aq) \longrightarrow \operatorname{Ba}^{2-}(aq) \longrightarrow \operatorname{Ba}^{2-}(aq)$		
(c) Ions in solution	NH_4^+ and PO_4^{3-} from $(NH_4)_3PO_4$; K ⁺ and CO_3^{2-} from K_2CO_3		
Possible precipitates	(NH ₄) ₂ CO ₃ and K ₃ PO ₄		
Solubility	Both $(NH_4)_2CO_3$ and K_3PO_4 are soluble.		
Net ionic equation	no reaction		

Why Write Net Ionic Equations?

- Net ionic equations
 - Focus attention on the reaction
 - Simplify calculations
- We will use net ionic equations from now on

Example 4.3

EXAMPLE 4.3 GRADED

When aqueous solutions of sodium hydroxide and iron(III) nitrate are mixed, a red precipitate forms.

- **a** Write a net ionic equation for the reaction.
- **b** What volume of 0.136 *M* iron(III) nitrate is required to produce 0.886 g of precipitate?
- How many grams of precipitate are formed when 50.00 mL of 0.200 M NaOH and 30.00 mL of 0.125 M Fe(NO₃)₃ are mixed?

a		
	ANALYSIS	
Information given:	reactant compounds [NaOH and Fe(NO3)3]	
Asked for:	net ionic equation	
	STRATEGY	
1. Follow the schematic diagram in Figure 4.3 to determine possible precipitates.		
2. Use the precipitation diagram (Figure 4.2) to determine whether the possible precipitates are soluble or insoluble.		

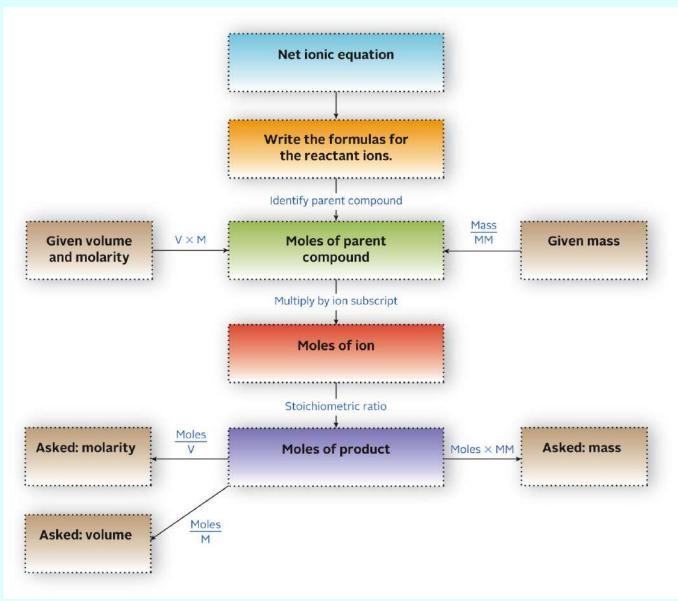
3. Write the net ionic equation. Start with the product.

continued

Example 4.3, (Cont'd)

SOLUTION				
Ions in solution	Na ⁺ and OH ⁻ from NaOH; Fe ³⁺ and NO ₃ ⁻ from Fe(NO ₃) ₃			
Possible precipitates	Fe(OH) ₃ and NaNO ₃			
Solubility	$Fe(OH)_3$ is insoluble and forms a precipitate.			
Net ionic equation	Net ionic equation $Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$			
b	ANALYSIS			
Information given:	mass of precipitate (0.886 g); molarity of $Fe(NO_3)_3$ (0.136 M)			
Information implied:	molarity of reacting ion, Fe ³⁺ molar mass of precipitate			
Asked for:	volume of Fe(NO ₃) ₃ used in the reaction <i>continued</i>			

Example 4.3, (Cont'd)


	STRATEGY	
Reverse the pathway sho	own in Figure 4.6.	
mass Fe($(OH)_3 \rightarrow mol \text{ ppt} \rightarrow mol \text{ ion} \rightarrow mol \text{ of parent compound} \rightarrow V \text{ of parent compound}$	
SOLUTION		
mol Fe(NO ₃) ₃	$0.886 \text{ g Fe}(\text{OH})_3 \times \frac{1 \text{ mol Fe}(\text{OH})_3}{106.87 \text{ g Fe}(\text{OH})_3} \times \frac{1 \text{ mol Fe}^{3^+}}{1 \text{ mol Fe}(\text{OH})_3} \times \frac{1 \text{ mol Fe}(\text{NO}_3)_3}{1 \text{ mol Fe}^{3^+}} = 0.00829$	
$V_{ m Fe(NO_3)_3}$	$V = \frac{\text{mol}}{M} = \frac{0.00829 \text{ mol}}{0.136 \text{ mol/L}} = 0.0610 \text{ L}$	
C		
	ANALYSIS	
Information given:	net ionic equation from (a): $[Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)]$ volume (50.00 mL) and molarity (0.200 <i>M</i>) of NaOH volume (30.00 mL) and molarity (0.125 <i>M</i>) of Fe(NO ₃) ₃	
Information implied:	number of moles of reacting ions, Fe ³⁺ and OH ⁻ Data for moles of both reactants is given, making this a limiting reactant problem.	
Asked for:	mass of precipitate formed	

Example 4.3, (Cont'd)

; STRATEGY			
1. Follow the pathway in Figure 4.6 for both NaOH and Fe(NO ₃) ₃ to obtain moles of precipitate formed. mol NaOH ($V \times M$) \rightarrow mol OH ⁻ \rightarrow mol ppt Fe(NO ₃) ₃ ($V \times M$) \rightarrow mol Fe ³⁺ \rightarrow mol ppt			
 Choose the smaller number of moles and convert moles to mass. 			
SOLUTION			
mol ppt if NaOH limiting	$0.0500 \text{ L} \times 0.200 \frac{\text{mol NaOH}}{\text{L}} \times \frac{1 \text{ mol OH}^{-}}{1 \text{ mol NaOH}} \times \frac{1 \text{ mol Fe}(\text{OH})_{3}}{3 \text{ mol OH}^{-}} = 0.00333 \text{ mol Fe}(\text{OH})_{3}$		
mol ppt if Fe(NO ₃) ₃ limiting	$0.0300 \text{ L} \times 0.125 \frac{\text{mol Fe}(\text{NO}_3)_3}{\text{L}} \times \frac{1 \text{ mol Fe}^{3+}}{1 \text{ mol Fe}(\text{NO}_3)_3} \times \frac{1 \text{ mol Fe}(\text{OH})_3}{1 \text{ mol Fe}^{3+}} = 0.00375 \text{ mol Fe}(\text{OH})_3$		
Theoretical yield	$0.00333 \text{ mol} < 0.00375 \text{ mol}; 0.00333 \text{ mol} \text{ Fe}(\text{OH})_3 \text{ is obtained}$		
Fe(OH) ₃	$0.00333 \text{ mol} \times \frac{106.87 \text{ g}}{1 \text{ mol}} = 0.356 \text{ g}$		

Figure 4.6: Flow Chart for Solution Stoichiometry

Acids and Bases

 Everyday life includes contact with many acids and bases

Strong and Weak Acids and Bases

- Strong acids ionize completely to H⁺
 - HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq)
 - In a solution of 1.0 M HCI, there is 1M H⁺ and 1M CI⁻
 - No HCl is left un-ionized
 - Other strong acids ionize in similar fashion

The Double Arrow Notation (⇒)

- Some equations use a double arrow rather than a single arrow
- Note that the double arrow points in both directions
- For now, the double arrow indicates that a reaction does not proceed completely to the right

Weak Acids

- Weak acids ionize only partially
 - HB (aq) \rightleftharpoons H⁺ (aq) + B⁻ (aq)
 - HF (aq) \rightleftharpoons H⁺ (aq) + F⁻ (aq)
- Commonly, weak acids are 5% ionized or less

Strong Bases

- Strong bases ionize completely to OH⁻
 - NaOH (s) \rightarrow Na⁺ (aq) + OH⁻ (aq)
 - $Ca(OH)_2 (s) \rightarrow Ca^{2+} (aq) + 2 OH^{-} (aq)$

TABLE 4.1 Common Strong Acids and Bases

Name of Acid	Base	Name of Base
Hydrochloric acid	Lioh	Lithium hydroxide
Hydrobromic acid	NaOH	Sodium hydroxide
Hydriodic acid	КОН	Potassium hydroxide
Nitric acid	Ca(OH) ₂	Calcium hydroxide
Perchloric acid	Sr(OH) ₂	Strontium hydroxide
Sulfuric acid	Ba(OH) ₂	Barium hydroxide
	Hydrochloric acid Hydrobromic acid Hydriodic acid Nitric acid Perchloric acid	Hydrochloric acidLiOHHydrobromic acidNaOHHydriodic acidKOHNitric acidCa(OH)2Perchloric acidSr(OH)2

Weak Bases

- Weak bases react with water to form OH⁻, but the reaction does not go to completion
 - NH_3 (aq) + $H_2O \rightleftharpoons NH_4^+$ (aq) + OH^- (aq)
 - CH_3NH_2 (aq) + $H_2O \rightleftharpoons CH_3NH_3^+$ (aq) + OH^- (aq)
- Commonly, weak bases are 5% ionized or less

Acids and Bases - Reactions

- Acids react with bases
 - Strong acid-strong base
 - Weak acid-strong base
 - Weak base-strong acid

Strong Acid-Strong Base Reaction

- Always the same net ionic equation
 - H^+ (aq) + OH^- (aq) $\rightarrow H_2O$
- Note that as usual, net ionic equations use the smallest whole number coefficients
 - 2 HBr (aq) + Ba(OH)₂ (aq) \rightarrow 2 H₂O + CaBr₂ (aq)
 - Still has the same net ionic equation:
 - H^+ (aq) + OH^- (aq) $\rightarrow H_2O$

Weak Acid-Strong Base Reaction

- Two steps
 - HB (aq) \rightleftharpoons H⁺ (aq) + B⁻ (aq)
 - H^+ (aq) + OH^- (aq) $\rightarrow H_2O$
- Overall reaction
 - HB (aq) + OH⁻ (aq) \rightarrow B⁻ (aq) + H₂O

Weak Base-Strong Acid Reaction

- Two steps
 - NH_3 (aq) + $H_2O \rightleftharpoons NH_4^+$ (aq) + OH^- (aq)
 - H^+ (aq) + OH^- (aq) $\rightarrow H_2O$
- Overall reaction
 - NH_3 (aq) + H^+ (aq) $\rightleftharpoons NH_4^+$ (aq)

Example 4.4

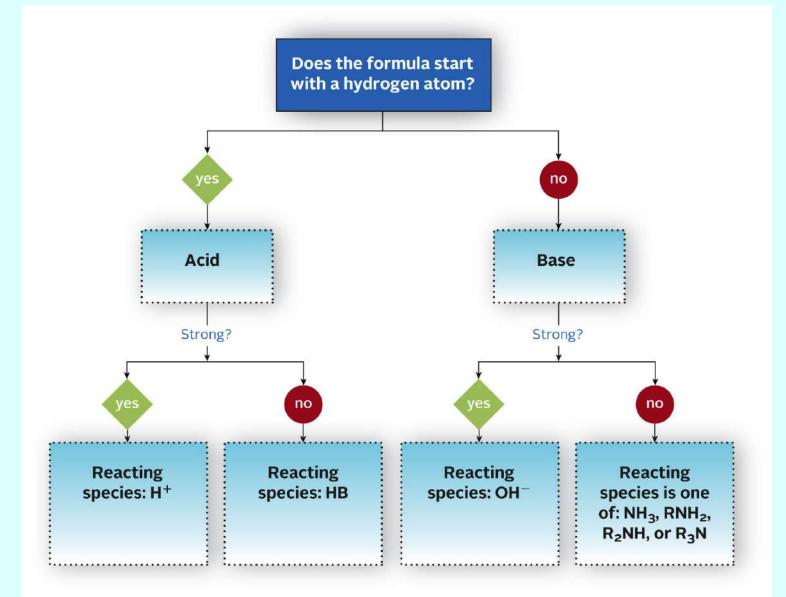
EXAMPLE 4.4

Write a net ionic equation for each of the following reactions in dilute water solution.

- (a) Hypochlorous acid (HClO) and calcium hydroxide.
- (b) Ammonia with perchloric acid (HClO₄).
- (c) Hydriodic acid (HI) with sodium hydroxide.

STRATEGY

- 1. Determine the nature of the compound (acid or base; strong or weak) and its reacting species. (Table 4.1 and Figure 4.8 are helpful.)
- 2. Recall Table 4.2 and write a net ionic equation for the acid-base reaction.


SOLUTION

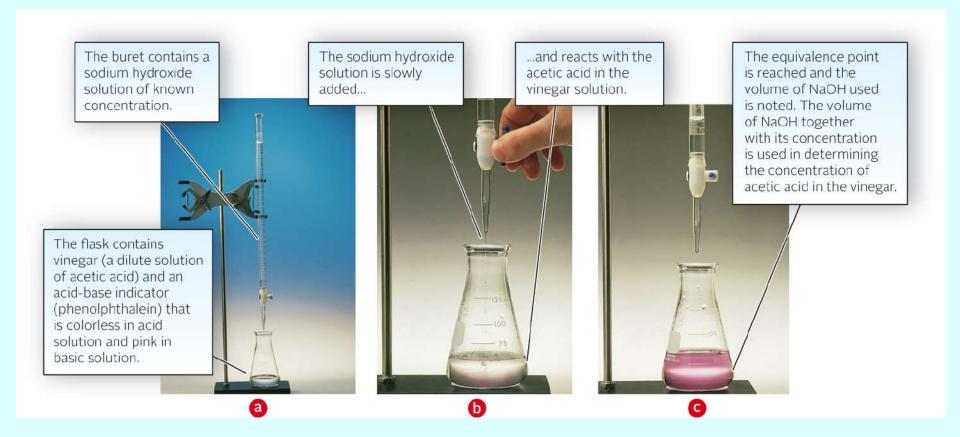
- (a) Nature of the compounds reacting species net ionic equation
- (b) Nature of the compounds reacting species net ionic equation
- (c) Nature of the compounds
 reacting species
 net ionic equation

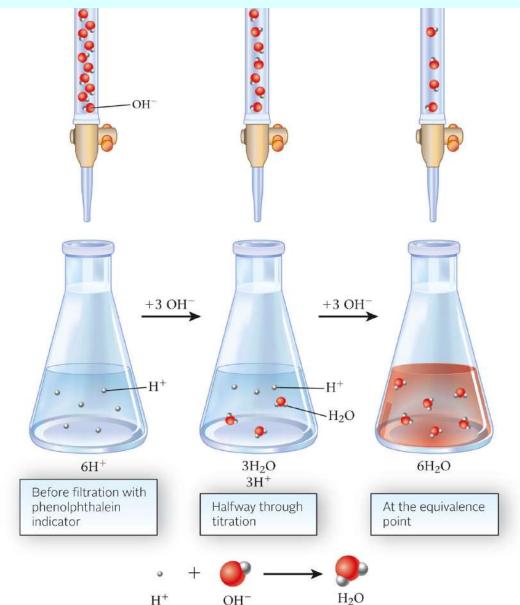
HClO: weak acid; Ca(OH)₂: strong base For HClO: HClO; for Ca(OH)₂: OH⁻ HClO(aq) + OH⁻(aq) \rightarrow ClO⁻(aq) + H₂O HClO₄: strong acid; NH₃: weak base For HClO₄: H⁺; for NH₃: NH₃ H⁺(aq) + NH₃(aq) \rightarrow NH₄⁺(aq) HI: strong acid; NaOH: strong base For HI: H⁺; for NaOH: OH⁻ H⁺(aq) + OH⁻(aq) \rightarrow H₂O

Figure 4.8: Flowchart for Acid-Base Reactions

- Commonly used to determine the concentration of a dissolved species or its percentage in a mixture
- Titration
 - Measuring the volume of a standard solution (known concentration) needed to react with a measured quantity of a sample

Titrations


- Titrant (in the buret)
 - Know concentration
 - Know volume
- Analyte (in the Erlenmeyer flask)
 - Know volume or mass
 - Determine concentration or mass percent by reacting with the titrant



- $HC_2H_3O_2$ (aq) + OH^- (aq) \rightleftharpoons $C_2H_3O_2^-$ (aq) + H_2O
 - The objective is to determine when the reaction is complete
 - When the number of moles of acid equals the number of moles of OH⁻, the *equivalence point* has been reached
 - Equivalence point is where the number of moles of acid equals the number of moles of base
 - The *endpoint* is indicated by a color change in the acid-base *indicator*

Figure 4.9 – An Acid-Base Titration

Figure 4.10: Molecular Representation of an Acid-Base Titration

EXAMPLE 4.5 GRADED

Three beakers labeled A, B, and C contain the weak acid H₂X. The weak acid is titrated with 0.125 *M* NaOH. Assume the reaction to be

$$H_2X(aq) + 2 OH^-(aq) \longrightarrow 2H_2O + X^{2-}(aq)$$

- Beaker A contains 25.00 mL of 0.316 M H₂X. What volume of NaOH is required for complete neutralization?
- **b** Beaker B contains 25.00 mL of a solution of H₂X and requires 28.74 mL of NaOH for complete neutralization. What is the molarity of the H₂X solution?
- Beaker C contains 0.124 g of H₂X and 25.00 mL of water. To reach the equivalence point, 22.04 mL of NaOH are required. What is the molar mass of H₂X?

Example 4.5, (Cont'd)

a				
	ANALYSIS			
Information given:	volume (25.00 mL) and molarity (0.316 <i>M</i>) of H ₂ X molarity (0.125 <i>M</i>) of NaOH net ionic equation $[H_2X(aq) + 2OH^-(aq) \rightarrow 2H_2O + X^{2-}(aq)]$			
Information implied:	stoichiometric ratio; reacting species			
Asked for:	volume of NaOH required for neutralization			
	STRATEGY			
SOLUTION				
mol NaOH NaOH $0.02500 \text{ L} \times 0.316 \frac{\text{mol } \text{H}_2 \text{X}}{\text{L}} \times \frac{2 \text{ mol } \text{OH}^-}{1 \text{ mol } \text{H}_2 \text{X}} \times \frac{1 \text{ mol } \text{NaOH}}{1 \text{ mol } \text{OH}^-} = 0.0158$ Volume of NaOH used $V = n \div M = \frac{0.0158 \text{ mol}}{0.125 M} = 0.126 \text{ L}$				

Example 4.5, (Cont'd)

Ь		
	ANALYSIS	
Information given:	volume (28.74 mL) and molarity (0.125 <i>M</i>) of NaOH volume of H ₂ X (25.00 mL) required for complete neutralization net ionic equation $[H_2X(aq) + 2OH^-(aq) \rightarrow 2H_2O + X^{2-}(aq)]$	
Information implied:	stoichiometric ratio	******
Asked for:	molarity of H_2X	******************
1	STRATEGY	
1. Use the stoichiometric ra	atio: 2 mol OH ⁻ /1 mol H ₂ X	
2. Follow the flow chart in	Figure 4.6.	
H ₂ X does not break up	into ions. Skip the moles parent compound \rightarrow moles ion step for H ₂ X.	
mol NaOH	$\longrightarrow \text{mol OH}^{-} \xrightarrow{\text{stoichiometric}} \text{mol } H_2X \xrightarrow{n \div V} M_{H_2X}$	
	SOLUTION	
Mol H_2X Molarity of H_2X (<i>M</i>)	$0.02874 \text{ L} \times 0.125 \frac{\text{mol NaOH}}{\text{L}} \times \frac{1 \text{ mol OH}^{-}}{1 \text{ mol NaOH}} \times \frac{1 \text{ mol H}_2 \text{X}}{2 \text{ mol OH}^{-}} = 0.00180$ $M = n \div V = \frac{0.00180 \text{ mol}}{0.02500 \text{ L}} = 0.0720 M$	
		continued

Example 4.5, (Cont'd)

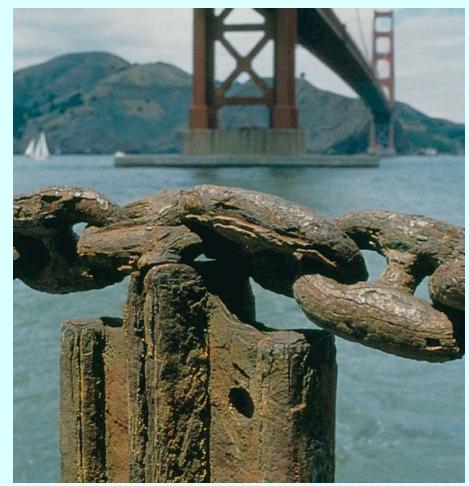
4.		2 Con
	NY	
	\mathcal{I}	
St.		
AN C		

	ANALYSIS			
Information given:	given: volume (22.04 mL) and molarity (0.125 <i>M</i>) of NaOH mass (0.124 g) of H ₂ X volume (25.00 mL) of water net ionic equation $[H_2X(aq) + 2OH^-(aq) \rightarrow 2H_2O + X^{2-}(aq)]$			
Information implied:	stoichiometric ratio			
Asked for:	molar mass of H ₂ X			
	STRATEGY			
2761 C	into ions. Skip the moles parent compound \rightarrow moles ion step for H ₂ X. \rightarrow mol OH ⁻ $\xrightarrow{\text{stoichiometric}}$ mol H ₂ X $\xrightarrow{\text{mass} \div n}$ MM of H ₂ X			
	SOLUTION			
mol H ₂ X mol ar mass of H ₂ X $0.02204 \text{ L} \times 0.125 \frac{\text{mol NaOH}}{\text{L}} \times \frac{1 \text{ mol OH}^{-}}{1 \text{ mol NaOH}} \times \frac{1 \text{ mol H}_2 \text{X}}{2 \text{ mol OH}^{-}} = 0.001378$ $MM = \text{mass} \div n = \frac{0.124 \text{ g}}{0.001378 \text{ mol}} = 90.0 \text{ g/mol}$				
	END POINTS			
0	ne number of moles before you can calculate mass, molar mass, volume, or molarity. ded to the solid H_2X is irrelevant to the solution of the problem.			

Acids and Metals

 Many metals will react with acids, producing hydrogen gas

Oxidation-Reduction Reactions


- Short name: Redox reactions
- Electron exchange
 - Oxidation is a loss of electrons
 - Reduction is a gain of electrons

Rusting of Metal

- When exposed to oxygen, metal containing iron will rust
 - Rust is iron oxide
 - Iron loses electrons
 - Oxygen gains electrons
 - This is a redox reaction

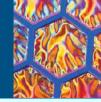
Reaction of Zinc with an Acid

- Zn (s) + 2 H⁺ (aq) \rightarrow Zn²⁺ (aq) + H₂ (g)
- Consider two half equations:
 - Zn loses two electrons
 - Zn (s) \rightarrow Zn²⁺ (aq) + 2 e⁻
 - H⁺ gains an electron
 - $2H^+$ (aq) + 2 $e^- \rightarrow H_2$ (g)

- Oxidation and reduction must occur together
- There is no net change in the number of electrons in a redox reaction

- Something must cause the zinc to lose two electrons
 - This is the oxidizing agent the H⁺
- Something must cause the H⁺ to gain two electrons
 - This is the *reducing agent* the Zn
- Note that
 - The oxidizing agent is reduced
 - The reducing agent is oxidized
 - Both of these appear as *reactants* (not products)

Reducing Agents



- Reducing agents become oxidized
- We know that metals commonly form cations
- Metals are generally reducing agents

Oxidizing Agents

- We know that many nonmentals form anions
- To form an anion, a nonmetal must gain electrons
- Many nonmetals are good oxidizing agents

- As we look at the concept of oxidation numbers it is important to realize that
 - Oxidation numbers are not real charges
 - Oxidation numbers *may or may not correspond to ion charges*
 - Oxidation numbers may be fractional

Rules Governing Oxidation Numbers

- 1. The oxidation number of an element in an *elementary substance* is *zero*.
- 2. The oxidation number of an *element in a monatomic ion* is the *charge on the ion*
- 3. Certain elements have the same oxidation number in most compounds
 - a. Group 1 metals are +1
 - b. Group 2 metals are +2
 - c. Oxygen is usually -2
 - d. Hydrogen is usually +1
- 4. Oxidation numbers sum to zero (compound) or to the charge (polyatomic ion)

Example 4.6

EXAMPLE 4.6

Assign an oxidation number (oxid. no.) to each element in the following species:

(a) N_2 (b) N^{3-} (c) NO_3^{-} (d) BaO (e) K_2O_2

continued

Example 4.6 (Cont'd)

SOLUTION			
(a) N_2 is in its elementary state. (Rule 1)	oxid. no. $N = 0$		
(b) N^{3-} is a monoatomic ion. (Rule 2)	oxid. no. $N = -3$		
(c) There are no Group 1 or Group 2 metals. (Rule 6)	oxid. no. $O = -2$		
NO_3^- is a polyatomic ion. (Rule 5)	3(-2) + x = -1; oxid. no. N = +5		
(d) Ba is a Group 2 metal. (Rule 3)	oxid. no. Ba = $+2$		
The sum of the oxidation numbers is 0. (Rule 5)	+2 + x = 0; oxid. no. $O = -2$		
(e) K is a Group 1 metal. (Rule 3)	oxid. no. $K = +1$		
The sum of the oxidation numbers is 0. (Rule 5)	2(1) + 2x = 0; oxid. no. $O = -1$		

END POINT

Always look for the "leading elements" (Group 1 and Group 2 metals and F) in a compound when you start. These elements will lead you to the oxidation numbers of the other elements in the compound. If these leading elements are not present, then look for H and O (+1 and -2, respectively, when not combined with Group 1 or 2 metals.)

Example 4.7

EXAMPLE 4.7

Consider the unbalanced redox equation:

 $\operatorname{Cr}^{3+}(aq) + \operatorname{H}_2\operatorname{O}_2(aq) \rightarrow 2\operatorname{H}_2\operatorname{O} + \operatorname{Cr}_2\operatorname{O}_7^{2-}(aq)$

- (a) Identify the element oxidized and the element reduced.
- (b) What are the oxidizing and reducing agents?

STRATEGY

- 1. Determine the oxidation number of each element.
- 2. Find elements whose oxidation numbers change.

SOLUTION			
Oxidation numbers	Cr: +3; H: +1; O: $-1 \rightarrow$ H: +1; O: -2 ; Cr: +6		
Change	$Cr: +3 \rightarrow +6 \text{ (increase)}$		
	$O: -1 \rightarrow -2 \text{ (decrease)}$		
Element reduced	O (decrease in oxidation number)		
Element oxidized	Cr (increase in oxidation number)		
Oxidizing agent	H_2O_2 (It is the species that contains the element that is reduced.)		
Reducing agent	$Cr_2O_7^{2-}$ (It is the species that contains the element that is oxidized.)		

Redox Reactions and Oxidation Numbers

- Oxidation is an increase in oxidation number
 - This is the same as a loss of electrons
- Reduction is a decrease in oxidation number
 - This is the same as a gain of electrons

Balancing Half-Equations (Oxidation or Reduction)

- A. Balance the atom(s) of the element being oxidized and do the same for the element being reduced.
- B. Balance the oxidation numbers by adding electrons to the correct side of the half equation.
- C. Balance charge by adding H^+ (acid) or OH^- (base).
- D. Balance hydrogens by adding H_2O .
- E. Check to make sure oxygen is balanced.

Example 4.8

EXAMPLE 4.8

Balance the following half-equations:

- (1) $NO_3^-(aq) \rightarrow NO(g)$ (basic solution)
- (2) $\operatorname{Cl}_2(g) \to \operatorname{ClO}_3^-(aq)$ (acidic solution)

STRATEGY

Follow the steps outlined above in the order given.

	SOLUTION			
(1) (a) Oxidation numbers	N: $+5 \rightarrow +2$; O: $-2 \rightarrow -2$; N is reduced.			
(b) Atom balance	1 N on each side; no adjustment is required.			
(c) "total oxidation" number	$N: 5(1) \rightarrow N: 2(1)$			
(d) Add electrons	The oxidation number for N goes from +5 to +2. It is reduced by 3. Add 3 electrons to the reactant side. $NO_3^-(aq) + 3e^- \rightarrow NO(g)$			
(e) Balance charge	reactants: $-1 + 3(-1) = -4$ products: 0 basic medium: add OH ⁻ . To balance, add 4 OH ⁻ on the right. NO ₃ ⁻ (<i>aq</i>) + 3 <i>e</i> ⁻ \rightarrow NO(<i>g</i>) + 4 OH ⁻ (<i>aq</i>) reactants: $-1 + 3(-1) = -4$ products: 4(-1) = -4			
		continued		

Example 4.8, (Cont'd)

SOLUTION (f) Balance H reactants: 0 H products: 4 H To balance, add 2H₂O on the left. $NO_3^-(aq) + 3e^- + 2H_2O \rightarrow NO(g) + 4OH^-(aq)$ reactants: 4 H products: 4 H (g) Check O: reactants: 3 + 2 = 5 products: 4 + 1 = 5The half-equation is balanced: $NO_3^-(aq) + 3e^- \rightarrow NO(g) + 4OH^-(aq)$ (2) (a) Oxidation numbers Cl: $0 \rightarrow +5$; O: $-2 \rightarrow -2$; Cl is oxidized. (b) Atom balance reactant: 2 Cl product: 1 Cl Multiply ClO_3^- by 2. $Cl_2(g) \rightarrow 2ClO_3(aq)$ (c) "total oxidation" number $Cl: 0(2) = 0 \rightarrow Cl: 5(2) = 10$ (d) Add electrons The oxidation number for Cl goes from 0 to 10. The oxidation number increases by 10. Add 10 electrons to the product side. $Cl_2(g) \rightarrow 2ClO_3^-(aq) + 10e^-$ (e) Balance charge reactants: 0 products: 2(-1) + 10(-1) = -12acidic medium: add H⁺. To balance, add 12 H⁺ on the right. $Cl_2(g) \rightarrow 2ClO_3^-(aq) + 10e^- + 12H^+(aq)$ reactants: 0 products: 2(-1) + 10(-1) + 12(+1) = 0(f) Balance H reactants: 0 H products: 12 H To balance, add 6H2O on the left. $Cl_2(g) + 6H_2O \rightarrow 2ClO_3(aq) + 10e^- + 12H^+(aq)$ reactants: 12 H products: 12 H (g) Check O: reactants: 6 products: 2(3) = 6 $Cl_2(g) + 6H_2O \rightarrow 2ClO_3(aq) + 10e^- + 12H^+(aq)$ The half-equation is balanced:

- 1. Split the equation into two half equations.
- 2. Balance one of the half equations.
- 3. Balance the other half equation.
- 4. Combine the two balanced half equations so as to eliminate electrons.

- In order to split the redox reaction into two half equations, determine the oxidation numbers first
 - One element must be oxidized
 - One element must be reduced

Example 4.9

EXAMPLE 4.9

Balance the following redox reactions.

- (1) $\operatorname{Fe}^{2+}(aq) + \operatorname{NO}_3^{-}(aq) \rightarrow \operatorname{Fe}^{3+}(aq) + \operatorname{NO}(g)$ (basic solution)
- (2) $MnO_4^-(aq) + Cl_2(g) \rightarrow Mn^{2+}(aq) + ClO_3^-(aq)$ (acidic solution)

STRATEGY

Follow the four-step process outlined above in the order given.

Example 4.9, (Cont'd)

SOLUTION

(1) (a) Split into two half-equations.

(b-c) Balance the half-equations.

(d) Eliminate electrons.

Combine half-equations.

(2) (a) Split into two half-equations.

(b-c) Balance the half-equations.

(d) Eliminate electrons.

Combine half-equations.

Net ionic equation

Balanced net ionic equation

 $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq)$ $NO_3^-(aq) \rightarrow NO(g)$

Check the text. This has been done earlier. $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$ $NO_{3}^{-}(aq) + 3e^{-} + 2H_{2}O \rightarrow NO(g) + 4OH^{-}(aq)$

Multiply the oxidation half-equation by 3. $3[Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}]$

 $NO_3^{-}(aq) + 3Fe^{2+}(aq) + 2H_2O \rightarrow NO(g) + 4OH^{-}(aq) + 3Fe^{3+}(aq)$

```
MnO_4^{-}(aq) \rightarrow Mn^{2+}(aq)Cl_2(g) \rightarrow ClO_3^{-}(aq)
```

The oxidation half-equation is balanced in Example 4.8. $Cl_2(g) + 6H_2O \rightarrow 2ClO_3^-(aq) + 10e^- + 12H^+(aq)$ Try to balance the reduction half-equation. $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$

Multiply the reduction half-equation by 2. $2[MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O]$

 $Cl_2(g) + 6H_2O + 2MnO_4^-(aq) + 16H^+(aq) \rightarrow$ 2ClO₃⁻(aq) + 12H⁺(aq) + 2Mn²⁺(aq) + 8H₂O

 $6H_2O \rightarrow 8H_2O = 2H_2O$ (product side) $16H^+ \rightarrow 12H^+ = 4H^+$ (reactant side)

 $\operatorname{Cl}_2(g) + 2\operatorname{MnO}_4^{-}(aq) + 4\operatorname{H}^+(aq) \rightarrow 2\operatorname{ClO}_3^{-}(aq) + 2\operatorname{Mn}^{2+}(aq) + 2\operatorname{H}_2\operatorname{O}$

END POINT

It is a good idea to check both mass and charge balance in the final balanced net ionic equation. In (2), for example:

	CI Atoms	Mn Atoms	O Atoms	H Atoms	Charge
Left	2	2	2(4) = 8	4	+0-2+4=+2
Right	2	2	2 <mark>(3) + 2 = 8</mark>	2(2) = 4	-2 + 4 + 0 = +2

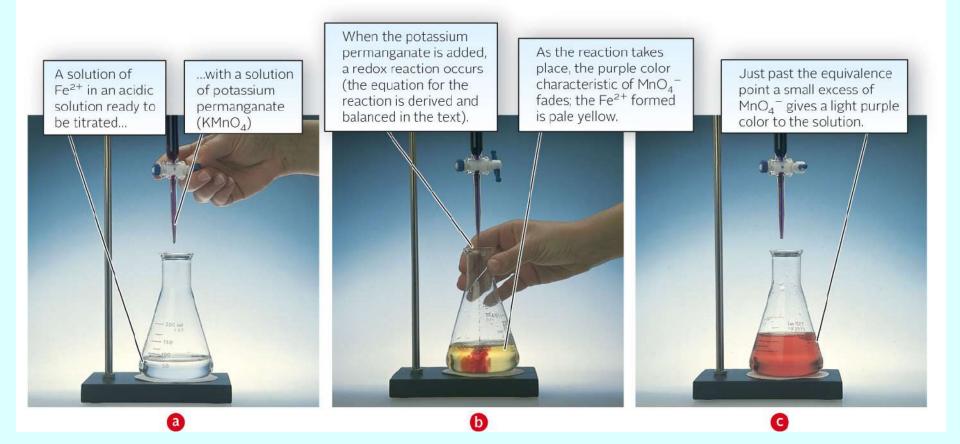
EXAMPLE 4.10

Consider the balanced equation for the reaction between iron(II) and permanganate ions in acidic solution:

 $MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O$

What volume of 0.684 M KMnO₄ solution is required to completely react with 27.50 mL of 0.250 M Fe(NO₃)₂ (Figure 4.12)?

	ANALYSIS
Information given:	V (27.50 mL) and M (0.250) of Fe(NO ₃) ₂ M (0.684) of KMnO ₄
Information implied:	reacting species; stoichiometric ratios
Asked for:	volume of KMnO ₄


Example 4.10, (Cont'd)

	STRATEGY	
Follow the flow chart shown in Figure 4.6.		
$V \times M \rightarrow \text{mol parent:mol id}$	on \rightarrow mol ion \rightarrow mol parent $\rightarrow V \times M$	
	SOLUTION	
1. Parent \rightarrow ion	$Fe(NO_3)_2$ (parent) → Fe^{2+} (ion) $KMnO_4$ (parent) → MnO_4^- (ion)	
2. mol $Fe(NO_3)_2$	$V \times M = (0.02750 \text{ L})(0.250 \text{ mol/L}) = 0.00688$	
3. mol Fe ²⁺	$0.00688 \text{ mol Fe}(\text{NO}_3)_2 \times \frac{1 \text{ mol Fe}^{2+}}{1 \text{ mol Fe}(\text{NO}_3)_2} = 0.00688$	
4. mol MnO_4^-	$0.00688 \text{ mol Fe}^{2+} \times \frac{1 \text{ mol MnO}_4^-}{5 \text{ mol Fe}^{2+}} = 0.00138$	
5. mol KMnO ₄	$0.00138 \text{ mol } \text{MnO}_4^- \times \frac{1 \text{ mol } \text{KMnO}_4}{1 \text{ mol } \text{MnO}_4^-} = 0.00138$	
6. <i>V</i> KMnO ₄	moles = $V \times M$; $V = \frac{0.00138 \text{ mol}}{0.684 \text{ mol/L}} = 0.00202 \text{ L} = 2.02 \text{ mL}$	

Redox Titrations

 Redox reactions can be used to analyze an unknown in the same way as is done with acid-base reactions

Key Concepts – Reactions in Solution

- 1. Apply the precipitation diagram and schema (Figures 4.2 and 4.3) to
 - Predict solubility and precipitation reactions.
 - Write net ionic equations for precipitation reactions.
- 2. Perform stoichiometric calcuations for reactions.
- 3. Apply Tables 4.1, 4.2 and Figure 4.8 to write net ionic equations for acid-base reactions.
- 4. Determine oxidation numbers.
- 5. Balance half-equations and redox equations.