

Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste

Radioactivity and Nuclear Energy

Gretchen M. Adams • University of Illinois at Urbana-Champaign

Radioactivity

Objectives

- 1. To learn the types of radioactive decay
- 2. To learn to write nuclear equations for radioactive decay
- 3. To learn how one element may be changed to another by particle bombardment
- 4. To learn about radiation detection instruments
- 5. To understand half-life

Radioactivity

A Review of Atomic Terms

- nucleons particles found in the nucleus of an atom
 - neutrons
 - protons
- atomic number (Z) number of protons in the nucleus
- mass number (A) sum of the number of protons and neutrons
- isotopes atoms with identical atomic numbers but different mass numbers
- nuclide each unique atom

Radioactivity

A. Radioactive Decay

- radioactive nucleus which spontaneously decomposes forming a different nucleus and producing one or more particles
- nuclear equation shows the radioactive decomposition of an element

$${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e}$$

Radioactivity

5

A. Radioactive Decay

Types of Radioactive Decay

- Alpha-particle production
- Alpha particle helium nucleus
 - Examples

$$^{222}_{88}\text{Ra} \rightarrow ^{4}_{2}\text{He} + ^{218}_{86}\text{Rn}$$

$$^{230}_{90}\text{Th} \rightarrow ^{4}_{2}\text{He} + ^{226}_{88}\text{Ra}$$

Net effect is loss of 4 in mass number and loss of 2 in atomic number.

Radioactivity

A. Radioactive Decay

Types of Radioactive Decay

- Beta-particle production Beta particle – electron
 - Examples

$$^{234}_{90}\text{Th} \rightarrow ^{234}_{91}\text{Pa} + ^{0}_{-1}\text{e}$$

 $^{131}_{53}\text{I} \rightarrow ^{0}_{-1}\text{e} + ^{131}_{54}\text{Xe}$

Net effect is to change a neutron to a proton.

Radioactivity

A. Radioactive Decay

Types of Radioactive Decay

- Gamma ray release Gamma ray – high energy photon
 - Examples

$^{238}_{92}U \rightarrow ^{4}_{2}He + ^{234}_{90}Th + 2 ^{0}_{0}\gamma$

Net effect is no change in mass number or atomic number.

Radioactivity

A. Radioactive Decay

Types of Radioactive Decay

• **Positron production** Positron – particle with same mass as an electron but with a positive charge

Examples

$$^{22}_{11}Na \rightarrow ^{0}_{1}e + ^{22}_{10}Ne$$

Net effect is to change a proton to a neutron.

Radioactivity

A. Radioactive Decay

Types of Radioactive Decay

- Electron capture
 - Example

$${}^{201}_{80}\text{Hg} + {}^{0}_{-1}\text{e} \longrightarrow {}^{201}_{79}\text{Au} + {}^{0}_{0}\gamma$$

$$\downarrow$$
Inner-orbital electron

Radioactivity

A. Radioactive Decay

Table 19.1 Various Types of Radioactive Processes

Process	Example	
β -particle (electron) production	$^{227}_{89}Ac \rightarrow ^{227}_{90}Th + ^{0}_{-1}e$	
positron production	$^{13}_{7}N \rightarrow ^{13}_{6}C + ^{0}_{1}e$	
electron capture	$^{73}_{33}As + ^{0}_{-1}e \rightarrow ^{73}_{32}Ge$	
α -particle production	$^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He	
γ-ray production	excited nucleus \rightarrow ground-state nucleus $+ {}^{0}_{0}\gamma$	
	excess energy lower energy	

Radioactivity

Concept Check

Which of the following produces a beta particle?

$$eledtron Gapture \rightarrow {}^{68}_{30}Zn$$

$$po^{62}_{e}Cu \rightarrow {}^{0}_{+1}e + {}^{62}_{28}Ni$$

alpha
$$p_{articte}^{212}$$
 He + ${}^{208}_{85}$ At

$$b \stackrel{129}{\Rightarrow} p \stackrel{129}{\Rightarrow} e \stackrel{0}{\Rightarrow} e \stackrel{129}{-1} e \stackrel{129}{=} e \stackrel{1$$

Radioactivity

Radioactivity

 $^{234}_{90}\,{
m Th}$

 $^{234}_{91}$ Pa

Radioactivity

${}^{11}_{6}C$ $\rightarrow {}^{0}_{1}e$ $+ \frac{A}{7}$ Positron

Radioactivity

A. Radioactive Decay

Radioactivity

Radioactivity

B. Nuclear Transformations

- Nuclear transformation change of one element to another
- Bombard elements with particles

Radioactivity

B. Nuclear Transformations

• Transuranium elements – elements with atomic numbers greater than 92 which have been synthesized

 Table 19.2
 Syntheses of Some of the Transuranium Elements

Neutron Bombardment	neptunium ($Z = 93$)	$^{238}_{92}U + ^{1}_{0}n \rightarrow ^{239}_{92}U \rightarrow ^{239}_{93}Np + ^{0}_{-1}e$
	americium ($Z = 95$)	$^{239}_{94}Pu + 2 \ _{0}^{1}n \rightarrow ^{241}_{94}Pu \rightarrow ^{241}_{95}Am + _{-1}^{0}e$
	curium ($Z = 96$)	$^{239}_{94}$ Pu + $^{4}_{2}$ He $\rightarrow ^{242}_{96}$ Cm + $^{1}_{0}$ n
Positive-Ion Bombardment	californium ($Z = 98$)	$^{242}_{96}\text{Cm} + {}^{4}_{2}\text{He} \rightarrow {}^{245}_{98}\text{Cf} + {}^{1}_{0}\text{n or}$
		$^{238}_{92}\text{U} + {}^{12}_{6}\text{C} \rightarrow {}^{246}_{98}\text{Cf} + 4 {}^{1}_{0}\text{n}$
	rutherfordium ($Z = 104$)	$^{249}_{98}Cf + {}^{12}_{6}C \rightarrow {}^{257}_{104}Rf + 4 {}^{1}_{0}n$
	dubnium ($Z = 105$)	$^{249}_{98}Cf + {}^{15}_{7}N \rightarrow {}^{260}_{105}Db + 4 {}^{1}_{0}n$
	seaborgium ($Z = 106$)	$^{249}_{98}Cf + {}^{18}_{8}O \rightarrow {}^{263}_{106}Sg + 4 {}^{1}_{0}n$

Radioactivity

C. Detection of Radioactivity and the Concept of Halflife

 Geiger-Muller counter – instrument which measures radioactive decay by registering the ions and electrons produced as a radioactive particle passes through a gas-filled chamber

Radioactivity

C. Detection of Radioactivity and the Concept of Halflife

• Scintillation counter – instrument which measures the rate of radioactive decay by sensing flashes of light that the radiation produces in the detector

Radioactivity

Radioactivity

C. Detection of Radioactivity and the Concept of Halflife

 Half-life – time required for half of the original sample of radioactive nuclides to decay

Table 19.3The Half-livesfor Some of the RadioactiveNuclides of Radium

Nuclide	Half-life
²²³ ₈₈ Ra	12 days
²²⁴ ₈₈ Ra	3.6 days
²²⁵ ₈₈ Ra	15 days
²²⁶ ₈₈ Ra	1600 years
²²⁸ ₈₈ Ra	6.7 years

Radioactivity

Radioactivity

Objectives

- 1. To learn how objects can be dated by radioactivity
- 2. To understand the use of radiotracers in medicine

Application of Radioa

A. Dating by Radioactivity

Radiocarbon dating

- Originated in 1940s by Willard Libby
 - Based on the radioactivity of carbon-14

$${}^{14}_{6}C \rightarrow {}_{-1}^{0}e + {}^{14}_{7}N$$

Used to date wood and artifacts

Application of Radioactivity

B. Medical Applications of Radioactivity

Radiotracers

 Radioactive nuclides that can be introduced into organisms and traced for diagnostic purposes. Table 19.4Some Radioactive Nuclides,Their Half-lives, and Their Medical Applicationsas Radiotracers*

Nuclide	Half-Life	Area of the Body Studied
¹³¹ I	8.1 days	thyroid
⁵⁹ Fe	45.1 days	red blood cells
⁹⁹ Mo	67 hours	metabolism
³² P	14.3 days	eyes, liver, tumors
⁵¹ Cr	27.8 days	red blood cells
⁸⁷ Sr	2.8 hours	bones
⁹⁹ Tc	6.0 hours	heart, bones, liver, lungs
¹³³ Xe	5.3 days	lungs
²⁴ Na	14.8 hours	circulatory system

*Z is sometimes not written when listing nuclides.

Application of Radioactivity

Application of Radioactivity

Application of F

Half-lives of Some Radiotracers

Objectives

- 1. To introduce fusion and fission as sources of energy
- 2. To learn about nuclear fission
- 3. To understand how a nuclear reactor works
- 4. To learn about nuclear fusion
- 5. To see how radiation damages human tissue

A. Nuclear Energy

- Two types of nuclear processes can produce energy
 - Combining 2 light nuclei to form a heavier nucleus fusion
 - Splitting a heavy nucleus into 2 nuclei with smaller mass numbers - fission

Using the Nucleus as a Source of Energy

B. Nuclear Fission

- Releases 2.1 ×10¹³ J/mol uranium-235
- Each fission produces 3 neutrons.

Using the Nucleus as a Source of Energy

B. Nuclear Fission

- Chain reaction self sustaining fission process caused by the production of neutrons that proceed to split other nuclei
- Critical mass mass of fissionable material required to produce a chain reaction

Using the Nucleus as a

Using the Nucleus as a Source of Energy

C. Nuclear Reactors

Using the Nucleus as a Source of Energy

Using the Nucleus as a Source of Energy

D. Nuclear Fusion

- Process of combining 2 light nuclei
- Produces more energy per mole than fission
- Powers the stars and sun $^{1}_{1}H + ^{1}_{1}H \rightarrow ^{2}_{1}H + ^{0}_{1}e + energy$ $_{1}^{1}H + _{1}^{2}H \rightarrow _{2}^{3}He + energy$ ${}_{2}^{3}\text{He} + {}_{2}^{3}\text{He} \rightarrow {}_{2}^{4}\text{He} + 2 {}_{1}^{1}\text{H} + \text{energy}$ ${}_{2}^{3}\text{He} + {}_{1}^{1}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{1}^{0}\text{e} + \text{energy}$

Using the Nucleus as a Source of Energy

D. Nuclear Fusion

• Requires extremely high temperatures Currently not technically possible for us to use as an energy source

Using the Nucleus as a Source of Energy

E. Effects of Radiation

Factors Determining Biological Effects of Radiation

- Energy of the radiation
- Penetrating ability of the radiation
- Ionizing ability of the radiation
- Chemical properties of the radiation source

Using the Nucleus as a Source of Energy

E. Effects of Radiation

Table 19.5 Effects of Short-Term Exposures to Radiation

Dose (rem)	Clinical Effect
0–25	nondetectable
25-50	temporary decrease in white blood cell counts
100-200	strong decrease in white blood cell counts
500	death of half the exposed population within 30 days after exposure

E. Effects of Radiation

Table 19.6 Typical Radiation Exposures for a Person Living in the United States (1 millirem = 10^{-3} rem)

Source	Exposure (millirems/year)
cosmic	50
from the earth	47
from building materials	3
in human tissues	21
inhalation of air	5
Total from natural sources	126
X-ray diagnosis	50
radiotherapy X-rays, radioisotopes	10
internal diagnosis and therapy	1
nuclear power industry	0.2
luminous watch dials, TV tubes, industrial wastes	2
radioactive fallout	
Total from human activities	97
Total	193 = 0.193 rems