

cengage.com/chemistry/masterton

Chapter 11 Rate of Reaction

Edward J. Neth • University of Connecticut

Outline

- 1. Meaning of reaction rate
- 2. Reaction rate and concentration
- 3. Reactant concentration and time
- 4. Models for reaction rate
- 5. Reaction rate and temperature
- 6. Catalysis
- 7. Reaction mechanisms

Thermochemistry

- We have looked at the energy involved in a chemical reaction
 - Chapter 8
 - Some reactions evolve heat (exothermic)
 - Some reactions absorb heat (endothermic)
 - In order for a chemical reaction to be *feasible*, it must occur at a *reasonable rate*

Factors that Influence the Rate of Reaction

- Concentration of reactants
- Process by which the reaction takes place
- Temperature
- Presence of a catalyst
- Reaction mechanism

Meaning of Reaction Rate

- $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
 - What happens to the concentrations with time?
 - [N₂O₅] decreases
 - [NO₂] and [O₂] increase
 - Mathematically, we can express the changes as

$$-\Delta[N_2O_5] = \frac{\Delta[NO_2]}{2} = \frac{\Delta[O_2]}{\frac{1}{2}}$$

rate =
$$-\frac{\Delta[N_2O_5]}{\Delta t} = \frac{\Delta[NO_2]}{2\Delta t} = \frac{\Delta[O_2]}{\frac{1}{2}}$$
$$\frac{1}{2}\Delta t$$

Figure 11.1

General Form of the Rate Relationship

• For a reaction where $aA + bB \rightarrow cC + dD$

$$rate = \frac{-\Delta[A]}{a\Delta t} = \frac{-\Delta[B]}{b\Delta t} = \frac{\Delta[C]}{c\Delta t} = \frac{\Delta[D]}{d\Delta t}$$

EXAMPLE 11.1

Consider the following balanced hypothetical equation.

 $A(g) + 3B(g) \longrightarrow C(g) + 2D(g)$

b In the first 20 seconds of the reaction, the concentration of B dropped from 0.100 *M* to 0.0357 *M*. What is the average rate of the reaction in the given time interval?

C Predict the change in the concentration of D during this time interval.

Image: Solutionrate =
$$\frac{-\Delta[A]}{\Delta t} = \frac{-\Delta[B]}{3\Delta t} = \frac{\Delta[C]}{\Delta t} = \frac{\Delta[D]}{2\Delta t}$$
continued

Example 11.1 (Cont'd)

	ANALYSIS				
Information given:	time, t (20 s) [B] _o (0.100 M); [B] after 20 seconds (0.0357M) from part (a): the reaction rate for B $\left(\frac{-\Delta[B]}{3\Delta t}\right)$				
Asked for:	average rate of the reaction				
	STRATEGY				
Substitute into the rate equ	nation obtained in part (a).				
	SOLUTION				
average rate	rate = $\left(\frac{-\Delta[B]}{3\Delta t}\right) = -\frac{(0.0357 M - 0.100 M)}{3(20 s)} = 1.07 \times 10^{-3} M/s$				
C					
	ANALYSIS				
Information given:	from part (a): the rate equation for $D\left(\frac{-\Delta[D]}{2\Delta t}\right)$; rate of reaction (1.07 × 10 ⁻³ <i>M</i> /s)				
Asked for:	change in the concentration of D after 20 s, (Δ [D])				
	STRATEGY				
Substitute into the rate equ	nation obtained in part (a).				
	SOLUTION				
Δ[D]	rate = $\frac{\Delta[D]}{2\Delta t}$, $\Delta[D] = (1.07 \times 10^{-3} M/s)(2)(20 s) = 0.0428 M$				
	END POINT				

Formation of Ammonia

• $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

$$rate = \frac{-\Delta[N_2]}{\Delta t} = \frac{-\Delta[H_2]}{3\Delta t} = \frac{\Delta[NH_3]}{2\Delta t}$$

 If the N₂ is disappearing at 0.10 mol/L-min, the H₂ is disappearing at the rate of 0.30 mol/L-min and ammonia is appearing at a rate of 0.20 mol/L-min

Rate Measurements

- In order to measure a rate, something observable must change
- Color change:
 - $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$

Figure 11.2 – Instantaneous Rate

Rate Measurements, (Cont'd)

- $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
- The rate of a reaction can be determined by measuring
 - Absorption of visible light by the NO₂ that forms
 - NO₂ is reddish-brown
 - N₂O₅ is colorless
 - The change in pressure that results from the increase in the number of moles of gas
 - 1 mol reactant \rightarrow 2.5 mol product

Instantaneous Rate

 The instantaneous rate of a reaction is determined by calculating the slope of the line tangent to the concentration-time curve at the desired time

Reaction Rate and Concentration

- Rate is directly related to reactant concentration
- Consider H₂O₂
 - $H_2O_2(I) \rightarrow H_2O(g) + \frac{1}{2}O_2(g)$
 - When pure, decomposition is fast and explosive
 - When dilute, such as drugstore peroxide, the reaction is much slower and the solution is stable for months

Oxygen Concentration and Rate of Combustion

Rate and Collision

- Reactions occur when two particles of reactant collide with each other
 - The larger the concentration of reactant, the more likely molecules will collide
 - Rate depends on concentration

Rate Expression and Rate Constant (Fig. 11.3)

- Plotting the rate vs. the concentration for the decomposition of N₂O₅ gives a straight line

- The equation for the reaction is
 - Rate = $k[N_2O_5]$

- In general, for
 - A \rightarrow products
 - Rate = k[A]^m
 - m is the order of the reaction
 - m must be determined experimentally

Example 11.2

EXAMPLE 11.2

Acetaldehyle, CH_3CHO , occurs naturally in oak and tobacco leaves, and also is present in automobile and diesel exhaust. The initial rate of decomposition of acetaldehyde at 600°C

		CH ₃ CHO	$(g) \longrightarrow \operatorname{CH}_4(g)$	+ CO(g)		
was measured at a se	eries of concentratio	ons with the fol	lowing results:			
8- <u></u>	[CH ₃ CHO]	0.20 M	0.30 M	0.40 M	0.50 M	
	Rate (mol/L·s)	0.34	0.76	1.4	2.1	
Using these data, de	termine the reaction	n order; that is,	determine the	value of <i>m</i> in the	equation	
		rat	$ke = k[CH_3CHO]$] <i>m</i>		
			ANALYSIS			
Information given:	exper	iments with int	ial concentratio	ons and rates		
Asked for:	order	of the reaction				
			STRATEGY			
1 Choose two initia	l concentrations an	d their corresp	onding rates. W	e choose the first	two experiments	

- 1. Choose two initial concentrations and their corresponding rates. We choose the first two expe
- **2.** Calculate the rate ratio and the concentration ratio.
- **3.** Substitute into the following equation to obtain the order of the reaction, *m*.

$$\frac{\operatorname{rate}_2}{\operatorname{rate}_1} = \left(\frac{[A]_2}{[A]_1}\right)^m$$

Example 11.2, (Cont'd)

SOLUTION				
Rate ratio	$\frac{\text{rate}_2}{\text{rate}_1} = \frac{0.76}{0.34} = 2.2$			
Concentration ratio	$\frac{[CH_{3}CHO]_{2}}{[CH_{3}CHO]_{1}} = \frac{0.30}{0.20} = 1.5$			
т	$\frac{\text{rate}_2}{\text{rate}_1} = \left(\frac{[\text{CH}_3\text{CHO}]_2}{[\text{CH}_3\text{CHO}]_1}\right)^m \longrightarrow 2.2 = (1.5)^m \longrightarrow m = 2$ The reaction is second order.			
END POINTS				
1. If <i>m</i> is not obvious, then solve for <i>m</i> algebraically by taking the log of both sides:				
$2.2 = (1.5)^m$ becomes $\log 2.2 = m(\log 1.5); m = \frac{\log 2.2}{\log 1.5} = \frac{0.34}{0.18} = 1.9 \longrightarrow 2$				
2. You would get the same result $(m = 2)$ if you used any two experiments. Try it!				

Calculating k

- Once the order of the reaction is known, the rate constant is easy to calculate
 - Use the rate and concentration data to solve for the rate constant
 - Units
 - Rate is always in mol/L-time
 - If the reaction is first order, the rate constant will have units of 1/time
 - The units of the rate constant tell the order of the reaction if they are given

Order of Reaction with Multiple Reactants

- $aA + bB \rightarrow products$
- Rate = k[A]^m[B]ⁿ
- There are three orders:
 - The order with respect to A
 - The order with respect to B
 - The overall order (m+n)
- The orders can be determined the same way they are for single reactants

EXAMPLE 11.3

Consider the reaction between t-butylbromide and a base at 55°C:

 $(CH_3)_3CBr(aq) + OH^-(aq) \longrightarrow (CH_3)_3COH(aq) + Br^-(aq)$

A series of experiments is carried out with the following results:

	Expt. 1	Expt. 2	Expt. 3	Expt. 4	Expt. 5
[(CH ₃) ₃ CBr]	0.50	1.0	1.5	1.0	1.0
[OH-]	0.050	0.050	0.050	0.10	0.20
Rate (mol/L·s)	0.0050	0.010	0.015	0.010	0.010

continued

Example 11.3, (Cont'd)

- ^(a) Find the order of the reaction with respect to both $(CH_3)_3CBr$ and OH^- .
- **b** Write the rate expression for the reaction.
- Calculate the rate constant at 55°C.
- **d** What effect does doubling the concentration of OH^- have on the reaction if $[(CH_3)_3CBr]$ is kept at 1.0 M?

	ANALYSIS					
information given: results of initial state experiments						
Asked for:	order of the reaction with respect to (CH ₃) ₃ CBr and OH ⁻					
	STRATEGY					
 Choose two experiments (in our case, we choose experiments 1 and 3) where [OH⁻] is constant. Obtain the rate and concentration ratios for (CH₃)₃CBr and substitute into the equation below to find <i>m</i>.						
SOLUTION						
m	rate ratio: $\frac{0.015}{0.005} = 3$; concentration ratio: $\frac{1.5}{0.50} = 3$; $3 = (3)^m$; $m = 1$					
n	rate ratio: $\frac{0.010}{0.010} = 1$; concentration ratio: $\frac{0.20}{0.050} = 4$; $1 = (4)^n$; $n = 0$					
reaction order	The reaction is first-order with respect to $(CH_3)_3CBr$ and zero-order with respect to OH^- .					

b	
	ANALYSIS
Information given:	from part (a): <i>m</i> (1), <i>n</i> (0)
Asked for:	rate expression for the reaction
	SOLUTION
rate expression	rate = $k[(CH_3)_3CBr]^1[OH^-]^0 = k[(CH_3)_3CBr]$
C	
	ANALYSIS
Information given:	from part (b): rate expression (rate = $k[(CH_3)_3CBr]$) experiments with rates and concentrations at initial states
Asked for:	k continued

STRATEGY				
1. Substitute a rate and a concentration for $(CH_3)_3CBr$ and OH^- into the rate expression.				
2. Use any rate/concentration pair from any experiment. (We choose experiment 3.)				
SOLUTION				
$k \qquad \text{rate} = k[(\text{CH}_3)_3\text{CBr}] \longrightarrow 0.015 \frac{\text{mol}}{\text{L} \cdot \text{s}} = k\left(1.5 \frac{\text{mol}}{\text{L}}\right) \longrightarrow k = 0.010 \text{ s}^{-1}$				
d				
SOLUTION				
Changing $[OH^-]$ has no effect on the rate of the reaction. The reaction is zero-order ($n = 0$) with respect to OH ⁻ , which means that the rate is independent of its concentration.				

Rate and Concentration

Reaction Concentration and Time

- The rate expression can be integrated (using calculus) to produce a concentration-time relationship
 - The relationship depends on the order of the reaction
 - A new term, the half-life, will also result

First-Order Reactions

• For A \rightarrow products, the relationship is

$$\ln \frac{[A]_0}{[A]} = kt$$

- k is the rate constant
- t is time

Graphical Interpretation of the First-Order Relationship

We can put the first-order relationship into the form

 $\ln[A] = \ln[A]_0 - kt$

- Where, using y = mx + b,
 - In[A] is plotted on the y axis
 - t is plotted on the x axis
 - The slope of the line is -k
 - The y-intercept is In[A]₀

Example 11.4

EXAMPLE 11.4

For the first-order decomposition of N₂O₅ at 67°C, where k = 0.35/min, calculate

- a the concentration after six minutes, starting at 0.200 *M*.
- **b** the time required for the concentration to drop from 0.200 *M* to 0.150 *M*.
- C the time required for half a sample of N₂O₅ to decompose.

a	
	ANALYSIS
Information given:	$k(0.35/\text{min}); t(6.00 \text{ min}); [N_2O_5]_o (0.200 M)$ reaction order (first-order)
Asked for:	[N ₂ O ₅] after 6 minutes
	STRATEGY
Substitute into Equation 1	1.2a or 11.2b.
$\ln \frac{[N_2O_5]_0}{[N_2O_5]} = kt \text{ or } t$	$\ln [N_2 O_5]_0 - \ln [N_2 O_5] = kt$
	SOLUTION
[N ₂ O ₅]	$\ln (0.200 \text{ mol/L} \cdot \text{min}) - \ln [N_2O_5] = 0.35 \frac{1}{\text{min}} \times 6.00 \text{ min}$ $\ln [N_2O_5] = -1.609 - 2.1 = -3.7 \longrightarrow [N_2O_5] = e^{-3.7} = 0.024 \text{ mol/L}.$

continued

Example 11.4, (Cont'd)

<u> </u>		200
	ar.	
S.		
Ň		T

	ANALVELE
	ANALYSIS
Information given:	$k(0.35/\text{min}); [N_2O_5]_o (0.200 M); [N_2O_5]_t (0.150 M)$
Asked for:	t
	STRATEGY
Substitute into Equation 1	1.2a or 11.2b.
	SOLUTION
t	$\ln(0.200 M) - \ln(0.150 M) = \frac{0.35}{\min} \times t \longrightarrow -1.61 - (-1.90) = 0.35 t \longrightarrow t = 0.82 \min$
C	
	ANALYSIS
Information given:	$k(0.35/\text{min}); [N_2O_5] = (\frac{1}{2}) [N_2O_5]_o$
Asked for:	t
	STRATEGY
Substitute into Equation 1	1.2a or 11.2b.
	SOLUTION
t	$\ln \frac{[N_2O_5]_o}{\frac{1}{2}[N_2O_5]_o} = (0.35/\text{min}) t \longrightarrow \ln 2 = (0.35/\text{min})t \longrightarrow t = 0.693/0.35 = 2.0 \text{ min}$

The Half Life

- The half life of a reaction is the time it takes for half the initial concentration of reactant to react
- For a first order reaction, at the half life, $[A] = 1/2[A]_0$ so

$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$$

• Notice that for a first order reaction, the half life is independent of the starting concentration of reactant

Applications of First Order Kinetics

- Radioactive decay is a first-order process
- If X₀ is the initial amount of radioactive element,

$$\ln \frac{X_0}{X} = kt$$

TABLE 11.1 Decomposition of N₂O₅ at 67°C ($t_{1/2}$ = 2.0 min)

t(min)	0.0	2.0	4.0	6.0	8.0
[N ₂ O ₅]	0.160	0.080	0.040	0.020	0.010
Fraction of N ₂ O ₅ decomposed	0	<u>1</u> 2	$\frac{3}{4}$	<u>7</u> 8	<u>15</u> 16
Fraction of N ₂ O ₅ left	1	<u>1</u> 2	$\frac{1}{4}$	<u>1</u> 8	<u>1</u> 16
Number of half-lives	0	1	2	3	4
Example 11.5

EXAMPLE 11.5 GRADED

Plutonium-240 (Pu-240) is a byproduct of the nuclear reaction that takes place in a reactor. It takes one thousand years for 10.0% of a 4.60-g sample to decay.

What is the half-life of Pu-240?

(b) How long will it take to reduce a 2.00-g sample to 15% of its original amount?

What is the rate of decay of a 5.00-g sample in g/year?

a	
	ANALYSIS
Information given:	time, t (1000 y); $[Pu-240]_0$ (4.60 g); rate of decay (10%/1000 years)
Information implied:	reaction order; k; [Pu-240] after 1000 years
Asked for:	t _{1/2}
	STRATEGY
 Find [Pu-240] after 1000 [Pu-240] = [Pu-240]₀ - All nuclear reactions are Find t_{1/2} by substituting t_{1/2} = 0.693/k) years. - 0.10([Pu-240] _o) e first order. Find <i>k</i> by substituting into Equation 11.2a or 11.2b. into Equation 11.3.
	SOLUTION
[Pu-240]	[Pu-240] = 4.60 g - (0.10)(4.60 g) = 4.14 g
k	$\ln 4.60 - \ln 4.14 = k(1000 \text{ y}) \longrightarrow k = 1.05 \times 10^{-4} \text{ y}^{-1}$
t _{1/2}	$t_{1/2} = \frac{0.693}{1.05 \times 10^{-4} \mathrm{v}^{-1}} = 6.60 \times 10^3 \mathrm{y}$

Example 11.5, (Cont'd)

4			A
	5 Y		Ń
8	51	X	Č
1		A MAR	2
Ň			1

b		
	ANALYSIS	
Information given:	$[Pu-240]_{o}$ (2.00 g); $[Pu-240]$ (15% of 2.00 g) from part (a): $k(1.05 \times 10^{-4} \text{ y}^{-1})$	
Asked for:	t	continued

ST	RA	TE	GY
. .	1.1.1		<u> </u>

1. Find [Pu-240].

2. Find *t* by substituting into Equation 11.2a or 11.2b.

	SOLUTION
[Pu-240]	[Pu-240] = 0.15(2.00 g) = 0.30 g
t	$\ln 2.00 - \ln 0.30 = (1.05 \times 10^{-4} \text{ y}^{-1})t \longrightarrow t = 1.8 \times 10^{4} \text{ y}$

Example 11.5, (Cont'd)

C	
	ANALYSIS
Information given:	$[Pu-240]_o$ (5.00 g); from part (a): $k(1.05 \times 10^{-4} \text{ y}^{-1})$
Information implied:	reaction order ($m = 1$)
Asked for:	rate of decay
	STRATEGY
Since the question is now to	relate concentration and rate, you must substitute into the general rate expression for Pu-240 decay.
rate = k [Pu-240] _o ¹	
	SOLUTION
Rate	rate = $(1.05 \times 10^{-4} \text{ y}^{-1})(5.00 \text{ g}) = 5.25 \times 10^{-4} \text{ g/y}$
	END POINT
In part (c) the rate is depen amount.	dent on the initial mass unlike in part (a), where the half-life is independent of the original

Zero Order Reactions

• For a zero order reaction A \rightarrow products

Rate = k[A]⁰ = k
[A] = [A]₀ - kt

$$t_{1/2} = \frac{[A]_0}{2k}$$

linear : [A] vs. t

 Note that the half life of a zero order reaction does depend on the initial concentration of reactant

Decomposition of HI

• The decomposition of HI over a solid surface is one example of a zero order reaction

Au

• HI (g) $\rightarrow \frac{1}{2}$ H₂ (g) + $\frac{1}{2}$ I₂ (g)

Second-Order Reactions

• For A \rightarrow products, Rate = k[A]²

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$
$$t_{1/2} = \frac{1}{k[A]_0}$$
$$linear : \frac{1}{[A]} vs.t$$

TABLE 11.2 Characteristics of Zero-, First-, and Second-Order Reactions of the Form A $(g) \longrightarrow$ products; [A], [A]_o = conc. A at t and t = 0, respectively

Order	Rate Expression	ConcTime Relation	Half-Life	Linear Plot
0	rate = k	$[A]_{\circ} - [A] = kt$	[A] _o /2k	[A] vs. t
1	rate = $k[A]$	$\ln \frac{[A]_{o}}{[A]} = kt$	0.693/k	ln [A] vs. <i>t</i>
2	rate = $k[A]^2$	$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$	1/k [A] _o	1 [A] vs. t

EXAMPLE	11.6					
The following	data were obtained	l for the gas-phase	e decomposition of h	ydrogen iodide:		
	Time (h)	0	2	4	6	_
	[HI]	1.00	0.50	0.33	0.25	
Is this reaction	n zero-, first-, or see	cond-order in HI?				
			STRATEGY			
1. Prepare a ta	able listing [HI], ln	[HI], and 1/[HI] a	s a function of time f	from the experimenta	al <mark>da</mark> ta given.	
2. Make a plo	t of each concentra	tion-time relation	ship.			
3. See Table 1	1.2 for the order of	the reaction basec	l on the linear plot th	nat you obtain.		<i>continued</i>

		SOLUTION		
concentration-time table	t	[HI]	In [HI]	1/[HI]
	0	1.00	0	1.0
	2	5.0	-0.69	2.0
	4	0.33	-1.10	3.0
	6	0.25	-1.39	4.0
plots order of the reaction	See Figure 11.5. 1/[HI] vs time	gives a linear plot. Th	ne reaction is second-on	·der.
		END POINTS	i -	
1. Note that the concentratio over in 2 hours.	n drops from 1.00 A	M to 0.500 M in 2 ho	ars. If the reaction were	e zero-order, it would be al

2. If the reaction is first-order, the concentration would be 0.25 *M* after 4 hours.

Figure 11.5

Example 11.7

EXAMPLE 11.7 CONCEPTUAL

A certain reaction is first-order in A and second-order in B. In the box shown below, which is assumed to have a volume of one liter, a mole of A is represented by \bigcirc , a mole of B by \bigcirc .

In which of the three boxes shown below is the rate of reaction the same as that in the box shown above?

(2)	(3)	(4)
-		

ANALISIS	AN	AL	Y	S	S
----------	----	----	---	---	---

Information given:	order of the reaction with respect to A (first-order) and to B (second-order) concentrations of A and B	
Asked for:	Which box has the same reaction rate as box (1)?	continued

Example 11.7, (Cont'd)

	STRATEGY	
Write the reaction rate for each box and compare.		
	SOLUTION	
Box (1)	$rate = k(1)(2)^2 = 4k$	
Box (2)	$rate = k(2)(1)^2 = 2k$	
Box (3)	$rate = k(4)(1)^2 = 4k$	
Box (4)	$rate = k(2)(2)^2 = 8k$	
	The rates in boxes (1) and (3) are the same.	

Modeling Reaction Rates

- Two basic models of reaction rates
 - 1. Collision Model
 - 2. Transition State Model

Collision Model: Activation Energies

- CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
- Reaction takes place directly between CO and NO₂
 - Doubling [CO] doubles the rate
 - Doubling [NO₂] doubles the rate
- Experimentally, the rate expression is
 - Rate = k[CO][NO₂]
- From kinetic theory, every CO molecule should collide with 10⁹ molecules of NO₂ in one second
 - Reaction should be over in a fraction of a second
 - In reality the half life is about 10 sec, so not every collision leads to a reaction

Collisions, Effective and Ineffective

- Why does every collision not lead to a reaction?
 - Molecules have to be oriented properly (sterics)
 - Kinetic energy of collision may not be high enough to overcome repulsions of electrons in molecules
 - For every reaction, there is a minimum energy which the molecules must possess to react
 - This energy is the *activation energy*

Figure 11.6

Figure 11.7

Quantitative Aspects of Collision Theory

- k = pZf
 - p is the steric factor, accounting for the fact that only certain orientations of molecules will lead to effective collision
 - Z is the collision frequency, the number of collisions per unit time at unit concentrations of reactants
 - f is the fraction of collision in which the energy of collision is equal to or greater than the activation energy

Collision Frequency Relationship

$$f = e^{\frac{-E_a}{RT}}$$

- E_a is the activation energy
- R is the gas constant in J/mol-K
- T is the Kelvin temperature $k = pZe^{\frac{-E_a}{RT}}$

• This combined equation tells us that the larger the activation energy, the smaller the rate constant

TABLE 11.3 Observed and Calculated Rate Constants for Second-Order Gas-Phase Reactions

Reaction	k Observed	Collision Model	Transition-State Model
$NO + O_3 \longrightarrow NO_2 + O_2$	6.3×10^{7}	4.0×10^{9}	3.2×10^{7}
$NO + Cl_2 \longrightarrow NOCI + Cl$	5.2	130	1.6
$NO_2 + CO \longrightarrow NO + CO_2$	1.2 × 10 ⁻⁴	6.4 × 10 ⁻⁴	1.0×10^{-4}
$2NO_2 \longrightarrow 2NO + O_2$	5.0 × 10 ⁻³	1.0×10^{-1}	1.2 × 10 [−] 2

Transition-State Model

- Consider the activation energy diagram for the CO-NO₂ reaction
 - In it, energy is plotted on the y-axis
 - Reaction path is plotted on the x-axis
- The reactants form an intermediate called an activated complex
 - The state of the system at the activated complex is called a *transition state*

Figure 11.8

Understanding Activation Energy Diagrams

- Note the similarity of the diagram to the energy diagrams introduced in Chapter 8
 - An additional feature is the high-energy *activated complex* that forms upon collision
 - The activated complex is at low concentration, in equilibrium with reactant and product
 - The activated complex may proceed to form product, or fall back to reactant(s)
 - The activation energy is the difference in energy between reactant and activated complex
 - ΔH is the difference in energy between reactant and product, just as it was in Chapter 8

Transition States and Activated Complexes

- In this model, the rate of reaction is controlled by the rate at which the activated complex forms
- The transition state model is somewhat more accurate than the collision model, at least when p=1
- Transition state model explains why the activation energy is ordinarily much smaller than the bond enthalpies in the reactant molecules

Reaction Rate and Temperature

- Reaction rate ordinarily increases with temperature
 - To cook food more quickly, raise the oven temperature
 - To slow the reactions that lead to food spoilage, lower the temperature in the refrigerator or freezer
- Every 10 °C increase in temperature doubles the reaction rate
 - This rule is general and approximate!

Kinetic Theory Revisited

- Recall from kinetic theory of gases that the temperature is a measure of the average kinetic energy of molecules
 - Higher temperatures mean higher kinetic energies
 - The higher the temperature, the larger the fraction of molecules that possess the activation energy (or greater)
 - With a larger fraction of molecules possessing E_a, a larger fraction of effective collisions results

Figure 11.9

Temperature and Reaction Rate

The light sticks outside the beaker at room temperature are brighter than the two sticks cooled to 0.2°C because the reaction rate is larger at the higher temperature. With the light sticks in the beaker heated well above room temperature, to 59°C, these sticks are now much brighter than those at room temperature.

a

b

Arrhenius Theory

• Recall from the collision model

$$k = pZe^{\frac{-E_a}{RT}}$$

• Combining p and z into a single term called the Arrhenius pre-exponential, A, results in

$$k = Ae^{\frac{-E_a}{RT}}$$

Graphical Interpretation of the Arrhenius Equation

- The Arrhenius equation can be put into y=mx+b form

$$\ln k = \ln A - \frac{E_a}{RT}$$

- A plot of ln(k) on the y-axis vs. 1/T on the x-axis yields
 - A slope equal to $-E_a/R$
 - A y-intercept equal to ln(A)
- By obtaining experimental data that allows the calculation of k at various temperatures, the activation energy can be determined

Recall the Two-Point Vapor Pressure Equation

- Clausius-Clapeyron
 - Taking two temperatures and two vapor pressures, the ΔH_{vap} can be determined
 - The Arrhenius equation is similar in nature and can be used for two k values and two temperatures
 - E_a may then be calculated

Figure 11.10

EXAMPLE 11.8 GRADED

Consider the first-order decomposition of A. The following is known about it:

- the rate constant doubles when the temperature increases from 15°C to 25°C.
- the rate constant for the decomposition at 40° C is 0.0125 s⁻¹.
- a What is the activation energy for the decomposition?
- **b** What is the half-life of A at 78°C?
- **C** What is the rate of the decomposition of a 0.200 *M* solution of *A* at 78°C?
- **d** At what temperature will the rate of the decomposition of 0.165 *M* be 0.124 mol/L \cdot s?

continued

Example 11.8, (Cont'd)

4		Á.	1
	5 P		
	\mathcal{X}	N	
R		NA VI	
			4

a			
ANALYSIS			
Information given:	k at 15°C(k_1); k at 25°C($k_2 = 2k_1$)		
Information implied:	R value		
Asked for:	E_{a}		
	STRATEGY		
1. Take 15°C (288 K) as T_1 where the rate constant is k_1 .			
2. Take 25°C (298 K) as <i>T</i> ₂ w	where the rate constant is $k_2 = 2k_1$.		
3. Substitute into Equation 1	11.7b.		
$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$			
SOLUTION			
E _a	$\ln \frac{2k_1}{k_1} = \frac{E_a}{8.31 \text{ J/mol} \cdot \text{K}} \left[\frac{1}{288} - \frac{1}{298} \right] \longrightarrow (0.693)(8.31) = E_a \left[\frac{1}{288} - \frac{1}{298} \right]$ $E_a = 4.9 \times 10^4 \text{ J/mol} = 49 \text{ kJ/mol}$		

Example 11.8, (Cont'd)

b			
ANALYSIS			
Information given:	from part (a): $E_a(4.9 \times 10^4 \text{ J/mol})$ $k_1 (0.0125 \text{ s}^{-1})$ at $T_1 (40^{\circ}\text{C})$; $T_2 (78^{\circ}\text{C})$		
Information implied:	R value		
Asked for:	t _{1/2} at 78°C		
STRATEGY			
1. Find k_2 at 78°C (T_2) by sub	ostituting into Equation 11.7b. Recall that k_1 and T_1 are given.		
2. Find $t_{1/2}$ at 78°C by substituting into Equation 11.3.			
SOLUTION			
<i>k</i> ₂ at 78°C	$\ln k_2 - \ln(0.0125) = \frac{4.9 \times 10^4 \text{J/mol}}{8.31 \text{J/mol} \cdot \text{K}} \left(\frac{1}{313 \text{K}} - \frac{1}{351 \text{K}}\right)$		
	$\ln k_2 = 2.04 + (-4.38) = -2.34 \longrightarrow k_2 = e^{-2.34} = 0.0963 \text{ s}^{-1}$		
t _{1/2}	$t_{1/2} = \frac{0.693}{0.0963 \text{ s}^{-1}} = 7.20 \text{ s}$		

Example 11.8, (Cont'd)

- 44	(D)	Sec.
	51	
	31	
a	240	ALL A
		3110

C	
	ANALYSIS
Information given:	first order reaction; from part (b) k at 78°C (0.0963 s ⁻¹); A_0 (0.200 M)
Information implied:	R value
Asked for:	rate continued

	STRATEGY	
Substitute into the rate exp rate = $k [A]^1$	ression for A	
	SOLUTION	
Rate	rate = $(0.0963 \text{ s}^{-1})(0.200 \text{ mol/L}) = 0.0193 \text{ mol/L} \cdot \text{s}$	
Example 11.8, (Cont'd)

d		
ANALYSIS		
Information given:	from part (a): $E_a(4.9 \times 10^4 \text{ J/mol})$; from part (b): k_1 (0.0125 s ⁻¹) at T_1 (40°C) rate (0.124 mol/L · s) for [A] (0.165 M)	
Information implied:	R value	
Asked for:	<i>T</i> at the given rate for A.	
STRATEGY		
1. Find $k(k_2)$ for the decomposition at T_2 by substituting into the rate expression.		
2. Substitute into the Arrhenius equation (11.7b).		
SOLUTION		
k	$0.124 \text{ mol/L} \cdot \text{s} = k(0.165 \text{ mol/L}) \longrightarrow k = 0.752 \text{ s}^{-1}$	
<i>T</i> ₂	$\ln(0.752 \text{ s}^{-1}) - \ln(0.0125 \text{ s}^{-1}) = \frac{4.9 \times 10^4 \text{ J/mol}}{8.31 \text{ J/mol} \cdot \text{K}} \left(\frac{1}{313 \text{ K}} - \frac{1}{T_2}\right)$	
	$4.10 = 5.9 \times 10^3 \left(\frac{1}{313 K} - \frac{1}{T_2}\right) \longrightarrow T_2 = 4.0 \times 10^2 \text{K} = 1.3 \times 10^{2} \text{C}$	

Catalysis

- A catalyst is a substance that increases the rate of a reaction without being consumed by it
 - Catalysts act by introducing a lower-energy path by which the reaction can take place
 - An activated complex forms at lower energy than without the presence of the catalyst

Figure 11.11 – Reaction Diagram

Path of reaction \rightarrow

Heterogeneous Catalysis

- A heterogeneous catalyst is in a phase different from that of the reaction mixture
 - Commonly a solid that is used for a gas or liquid phase reaction
 - Decomposition of N₂O on a gold surface
- Common heterogeneous catalyst: the *catalytic converter*, which contains a metal such as Pt
 - Catalyzes the oxidation of CO to CO₂
 - Catalyzes the oxidation of unburned hydrocarbons to CO₂ and water

Figure 11.12

The Catalytic Converter

- The other component of a catalytic converter is a metal such as rhodium
 - Rh catalyzes the *reduction* of NO to nitrogen and oxygen
- The "magic" of the catalytic converter
 - By combining different metals, it is possible to carry out oxidation and reduction simultaneously, on different molecules, within the same catalytic converter

Homogeneous Catalysis

- Homogeneous catalysts are present in the same phase as the reactants
 - Example: decomposition of H₂O₂
 - H_2O_2 (aq) \rightarrow $2H_2O$ (I) + O_2 (g)
 - Reaction is slow without a catalyst
 - Reaction becomes rapid if Nal (aq) is added

- Enzymes are biocatalysts
 - The same decomposition of hydrogen peroxide can be catalyzed by the enzyme called catalase
 - Enzymes can be very specific
 - One enzyme can be targeted to perform a very specific reaction
 - Maltose can be converted to glucose by maltase
 - Enzymes can speed up biological reactions by a factor of 10¹² or greater

Figure 11.13

Reaction Mechanisms

- A reaction mechanism is a description of a path, usually a series of steps, by which a reaction takes place
- Earlier, we saw the reaction
 - CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
 - Takes place directly at high temperatures
 - Occurs as a series of steps at lower temperatures

- At low temperature
 - NO₂ (g) + NO₂ (g) \rightarrow NO₃ (g) + NO (g)
 - CO (g) + NO₃ (g) \rightarrow CO₂ (g) + NO₂ (g)
- Overall, the sum of the steps is the same:
 - CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
- The nature of the rate expression and hence the reaction order depends on the mechanism by which the reaction takes place

Elementary Steps

- The individual steps in a mechanism are called elementary steps
 - Almost always unimolecular, bimolecular or termolecular:
 - A \rightarrow B + Crate = k[A]
 - A + B \rightarrow C + D rate = k[A][B]
 - $A + B + C \rightarrow D + Erate = k[A][B][C]$

Notes on Rate Expressions for Elementary Reactions

- Note that an elementary step implies that a reaction takes place exactly as written
 - This is different from an overall reaction, where the actual mechanism is unknown
- Therefore, the rate expression can be written directly from the elementary step equation
 - This is only true for elementary steps
 - For overall reactions, experiments must still be done to determine the rate expression

Slow Steps

- In a mechanism, one step is often slower than the other (or others if more than two steps)
 - The slow step is rate-determining
 - The rate of the slow step is the rate of the reaction

A Real-World Example

- Consider three people grading an examination
 - A spends 10 s grading question 1
 - B spends 15 s grading question 2
 - C takes 5 min to grade question 3
- The rate at which the exam is graded is

 $\frac{1 \text{ exam}}{10 \text{ s} + 15 \text{ s} + 300 \text{ s}} = 0.00308 \frac{\text{ exam}}{\text{ s}}$

- The rate at which grader C graded is $\frac{1 \text{ exam}}{300 \text{ s}} = 0.00333 \frac{\text{exam}}{\text{ s}}$
- These numbers are approximately equal

Another Real-World Example

- On a two-lane highway, the slowest driver is the limiting factor in determining how fast cars following can proceed

- Conclusions
 - 1. The overall rate of a reaction cannot exceed the rate of the slowest step
 - 2. If that step is by far the slowest, its rate will be approximately equal to that of the overall reaction
 - 3. The slowest step in a reaction will ordinarily be the one with the highest activation energy

Deducing a Rate Expression from a Proposed Mechanism

- 1. Find the slowest step and equate the rate of the overall reaction to the rate of that step
- 2. Find the rate expression for that slowest step

Figure 11.14

 In figure 11.14, clearly step 2 has the largest activation energy, so it is the slowest step

Deducing the Slower Step

- NO₂ (g) + NO₂ (g) \rightarrow NO₃ (g) + NO (g) (slow)
- CO (g) + NO₃ (g) \rightarrow CO₂ (g) + NO₂ (g) (fast)
- Overall, the sum of the steps is the same:
 - CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
 - Rate = $k[NO_2]^2$
 - Note that this rate expression is different from the one we saw at high temperature; in other words, the rate expression depends on the mechanism

- Mechanisms often involve reactive intermediates
 - These are produced in one step and consumed in a subsequent step
 - These do not appear in overall reactions
 - Concentrations are too small to observe experimentally
 - The terms for such species are eliminated in the process of determining the rate expression

Example 11.9

EXAMPLE 11.9

The decomposition of ozone, O₃, to diatomic oxygen, O₂, is believed to occur by a two-step mechanism:

Step 1:
$$O_3(g) \xrightarrow[k_1]{k_{-1}} O_2(g) + O(g)$$
 (fast)

Step 2: $O_3(g) + O(g) \xrightarrow{k_2} 2O_2(g)$ (slow) $2O_3(g) \longrightarrow 3O_2(g)$

Obtain the rate expression corresponding to this mechanism.

STRATEGY

- **1.** The rate-limiting step is the slow step (step 2). Write its rate expression.
- 2. Write the rate expressions for the forward and reverse reactions of step 1. Since step 1 is in equilibrium, rate forward reaction = rate backward reaction.
- 3. Express the rates of step 1 in terms of [O] and substitute into the rate expression for step 2.
- 4. Combine all constants into a single constant *k*.

Example 11.9, (Cont'd)

SOLUTION		
1. Rate expression for step 2	$rate = k_2[O_3][O]$	
2. Rate of forward reaction	rate = $k_1[O_3]$	
Rate of reverse reaction	$rate = k_{-1}[O_2][O]$	
Rate forward reaction = rate reverse reaction	$k_1[O_3] = k_{-1}[O_2][O]$	
3. [O]	$[O] = \frac{k_1[O_3]}{k_{-1}[O_2]}$	
Overall rate	rate = $k_2[O_3] \left(\frac{k_1[O_3]}{k_{-1}[O_2]} \right)$	
4. Combine all constants	$k = \frac{k_2 k_1}{k_{-1}}$	
	rate = $k \frac{[O_3]^2}{[O_2]}$	

Limitations on Mechanism Studies

- More than one mechanism is usually compatible with the data obtained from experiment
- It can be difficult to ascertain which mechanism is the true mechanism for a reaction

Key Concepts

- 1. Determine the reaction order from
 - Initial rate data
 - Concentration-time data
 - The reaction mechanism
- 2. Relate concentration and time for various orders of reaction
- 3. Use the Arrhenius equation to relate the rate constant to temperature