Chapter

Summary and Review

VOCABULARY

- triangle, p. 173
- equilateral triangle, p. 173
- isosceles triangle, p. 173
- scalene triangle, p. 173
- equiangular triangle, *p.* 174
- acute triangle, p. 174
- right triangle, p. 174
- obtuse triangle, p. 174

• vertex, p. 175

Full Page View

(目)

- corollary, p. 180
- interior angle, p. 181
- exterior angle, p. 181
- legs of an isosceles triangle, *p. 185*
- base of an isosceles triangle,
- base angles of an isosceles triangle, p. 185
- legs of a right triangle, p. 192
- hypotenuse, p. 192
- Pythagorean Theorem, p. 192
- Distance Formula, p. 194
- median of a triangle, p. 207
- centroid, *p. 208*

VOCABULARY REVIEW

Fill in the blank.

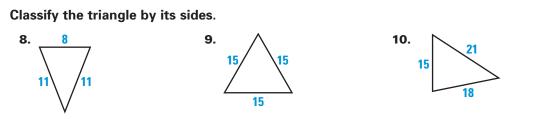
- **1.** A(n) <u>?</u> is a figure formed by three segments joining three noncollinear points.
- **2.** The side opposite the right angle is the <u>?</u> of a right triangle.

p. 185

- **3.** A(n) <u>?</u> to a theorem is a statement that can be proved easily using the theorem.
- **4.** The congruent sides of an isosceles triangle are called <u>?</u>, and the third side is called the <u>?</u>.
- **5.** A point that joins two sides of a triangle is called a(n) _?_.
- **6.** A segment from a vertex of a triangle to the midpoint of its opposite side is called a(n) ?.
- **7.** The point at which the medians of a triangle intersect is called the ______ of a triangle.

4.1 CLASSIFYING TRIANGLES

 EXAMPLES
 Classify the triangle by its angles and by its sides.


 Image: Acute isosceles
 Image: Acute isosceles

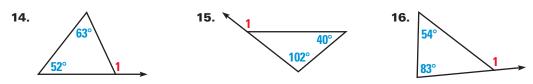
 Right isosceles
 Obtuse scalene

Examples on

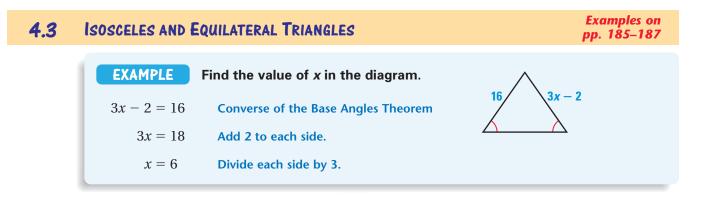
pp. 173–175

	Full Page View	Section	Page		Page	Section
Go to classzone.com	Table of Contents 🔍 🌒 🕄 🗐	**	<	Page 2 of 5	\triangleright	>>>>

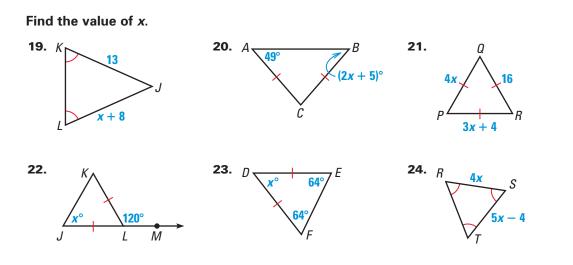
11. What kind of triangle has angle measures of 30°, 60°, and 90°?


12. What kind of triangle has angle measures of 84°, 55°, and 41°?

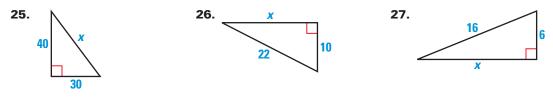
13. What kind of triangle has side lengths of 4 feet, 8 feet, and 8 feet?


ANGLE MEASURES OF TRIANGLESExamples on
pp. 179–181EXAMPLEGiven $m \angle 1 = 34^\circ$ and $m \angle 2 = 86^\circ$, find $m \angle 3$. $m \angle 3 = m \angle 1 + m \angle 2$ Exterior Angle Theorem
 $= 34^\circ + 86^\circ$ Substitute 34° for $m \angle 1$ and 86° for $m \angle 2$. $= 120^\circ$ Simplify.

Find $m \angle 1$.

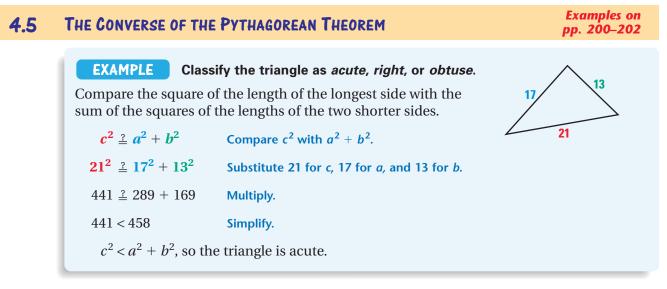

4.2

- **17.** The measure of one interior angle of a triangle is 16°. The other interior angles are congruent. Find their measures.
- **18.** The measure of one of the interior angles of a right triangle is 31°. Find the measures of the other interior angles.


	Full Page View	Section	Page		Page	Section
Go to classzone.com	Table of Contents	*	<	Page 3 of 5	\triangleright	>>>>

4.4 THE PYTHAGOREAN THEOREM AND THE DISTANCE FORMULA Examples on pp. 192–194

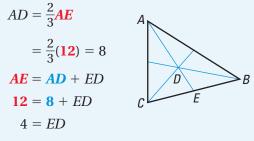
EXAMPLE Find the distance between $G(3, 5)$ and $H(7, -2)$.					
$GH = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Distance Formula	↓ <i>y</i>	G (3, 5)		
$=\sqrt{(7-3)^2+(-2-5)^2}$	Substitute 7 for $x_{2'}$ 3 for $x_{1'}$ -2 for $y_{2'}$ and 5 for y_{1} .				
$=\sqrt{4^2+(-7)^2}$	Simplify.				
$=\sqrt{16+49}$	Multiply.	−1 < 1			
$=\sqrt{65}$	Add.				
≈ 8.1	Approximate with a calculator.	*	<i>H</i> (7, −2)		


Find the unknown side length. Use a calculator to round your answer to the nearest tenth, if necessary.

Find the distance between the two points. Use a calculator to round your answer to the nearest tenth, if necessary.

28. <i>A</i> (0, 0) <i>B</i> (-3, 4)	29. <i>A</i> (2, 5) <i>B</i> (6, -4)	30. <i>A</i> (-8, 7) <i>B</i> (3, 7)	31. <i>A</i> (-4, -1) <i>B</i> (0, 6)
32. <i>A</i> (-2, -1)	33. <i>A</i> (8, -3) <i>B</i> (-2, 4)	34. <i>A</i> (9, 1)	35. <i>A</i> (5, 4)
<i>B</i> (-6, -7)		<i>B</i> (-3, -6)	<i>B</i> (0, 6)

	Full Page View	Section	Page		Page	Section
Go to classzone.com Table	of Contents 🔍 🌒 🗐	(الله الله الله الله الله الله الله الل	٩	Page 4 of 5	Þ	>>>

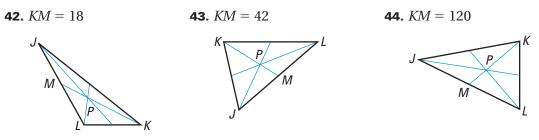

Use the side lengths to classify the triangle as *acute*, *right*, or *obtuse*.

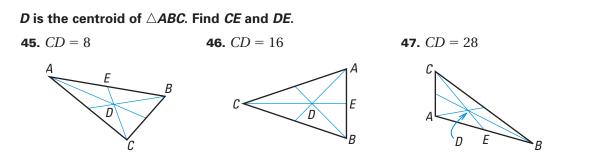
36. 12, 9, 15	37. 7, 11, 16	38. 18, 19, 22
39. 18, 42, 44	40. 10, 3, 12	41. 15, 21, 31

4.6 MEDIANS OF A TRIANGLE

EXAMPLES Find the segment lengths.

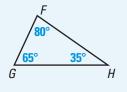
a. *D* is the centroid of $\triangle ABC$ and AE = 12. Find *AD* and *ED*.


b. *T* is the centroid of $\triangle QRS$ and RT = 18. Find *RU*.


Examples on

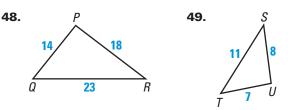
pp. 207-209

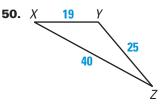
P is the centroid of $\triangle JKL$. Find *KP* and *PM*.

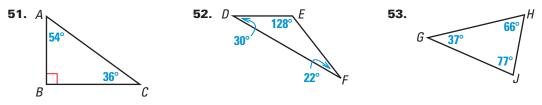


4.7 TRIANGLE INEQUALITIES

Examples on pp. 212–214


EXAMPLE Name the sides of the triangle shown from longest to shortest.


By Theorem 4.11, if one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.


So, because $m \angle F > m \angle G > m \angle H$, GH > FH > GF. The sides from longest to shortest are \overline{GH} , \overline{FH} , and \overline{GF} .

Name the angles from largest to smallest.

Name the sides from longest to shortest.

Determine whether it is possible to draw a triangle with the given side lengths. Explain your reasoning.

54. 10, 11, 20	55. 21, 23, 25	56. 3, 10, 15
57. 6, 6, 12	58. 13, 14, 15	59. 2, 3, 4
60. 4, 5, 9	61. 11, 11, 20	62. 14, 20, 38