

Chapter

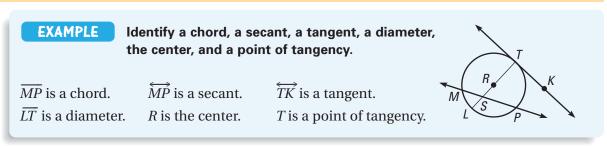
Full Page View

(目)

VOCABULARY

- chord, p. 589
- secant, *p. 589*
- tangent, p. 589
- point of tangency, p. 589
- tangent segment, p. 597
- minor arc, p. 601
- **major arc,** *p.* 601
- measure of a minor arc, p. 601

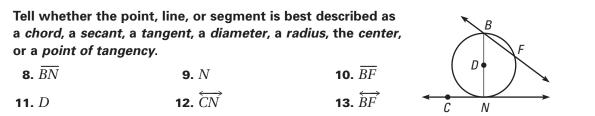
- measure of a major arc, p. 601
- semicircle, p. 601
- congruent circles, p. 602
- congruent arcs, p. 602
- arc length, p. 603
- inscribed angle, p. 614
- intercepted arc, p. 614
- inscribed, p. 615


- circumscribed, p. 615
- standard equation of a circle, *p. 628*
- rotation, p. 633
- center of rotation, p. 633
- angle of rotation, p. 633
- rotational symmetry, p. 634

VOCABULARY REVIEW

Fill in the blank.

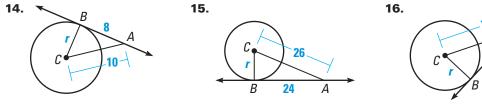
- **1.** A <u>?</u> is a line that intersects a circle in two points.
- **2.** A polygon is _____ in a circle if all of its vertices lie on the circle.
- **3.** A line in the plane of a circle that intersects the circle in exactly one point is called a <u>?</u>.
- **4.** If the endpoints of an arc are the endpoints of a diameter, then the arc is a <u>?</u>.
- **5.** An <u>?</u> is an angle whose vertex is on a circle and whose sides contain chords of the circle.
- **6.** A <u>?</u> is a segment whose endpoints are points on a circle.
- **7.** A <u>?</u> is a transformation in which a figure is turned about a fixed point.


11.1 PARTS OF A CIRCLE

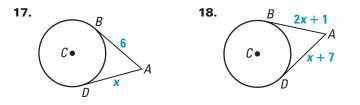
Examples on

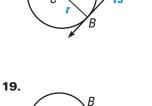
pp. 589–590

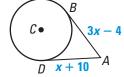
	Full Page View	Section	Page		Page	Section
Go to classzone.com	Table of Contents 🔍 🅄 🗐	**	<	Page 2 of 5	\triangleright	>>>>



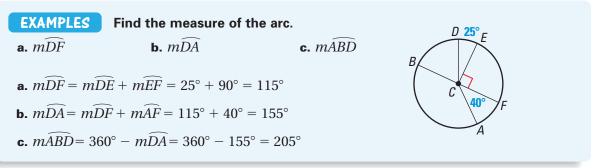
11.2 PROPERTIES OF TANGENTS

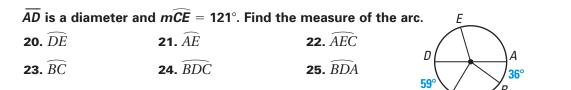

Examples on pp. 595–597


EXAMPLE \overrightarrow{AB} is tangent to $\odot C$. Find <i>CB</i> .								
$(\mathbf{AC})^2 = (\mathbf{AB})^2 + (\mathbf{CB})^2$	Pythagorean Theorem							
$29^2 = 21^2 + (CB)^2$	Substitute 29 for AC, and 21 for AB.							
$841 = 441 + (CB)^2$	Multiply.							
$400 = (CB)^2$	Subtract 441 from each side.							
20 = CB	Find the positive square root.							


 \overrightarrow{AB} is tangent to $\odot C$. Find the value of *r*.

 \overline{AB} and \overline{AD} are tangent to $\odot C$. Find the value of x.

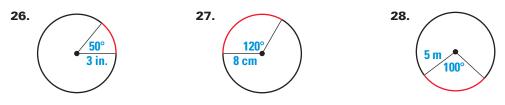



Examples on

pp. 601–603

11.3 ARCS AND CENTRAL ANGLES

	Full Page View	Section	Page		Page	Section
Go to classzone.com	Table of Contents	(کھ	<	Page 3 of 5	Þ	>>>>



Find the length of the red arc. Round your answer to the nearest hundredth.

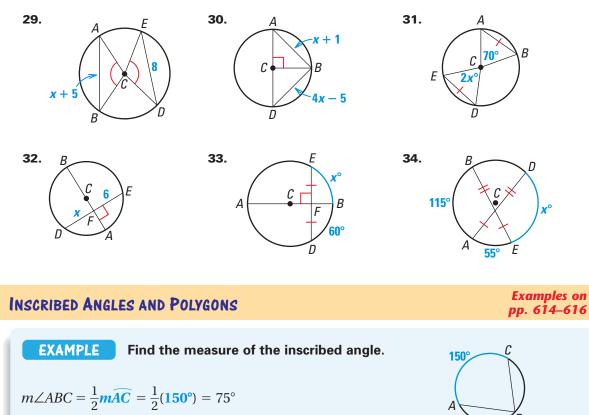
Find the value of x.

Because $\overline{AB} \cong \overline{EF}$, it follows that $\widehat{AB} \cong \widehat{EF}$.

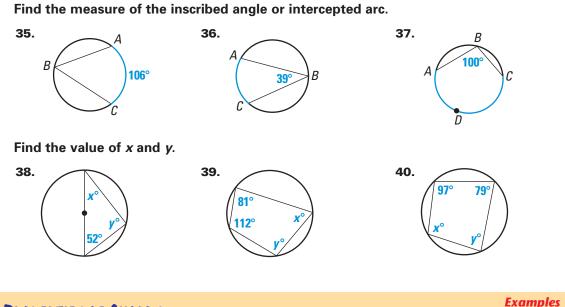
So, $\widehat{mAB} = \widehat{mEF} = 45^\circ$, and x = 45.

11.4 ARCS AND CHORDS

11.5

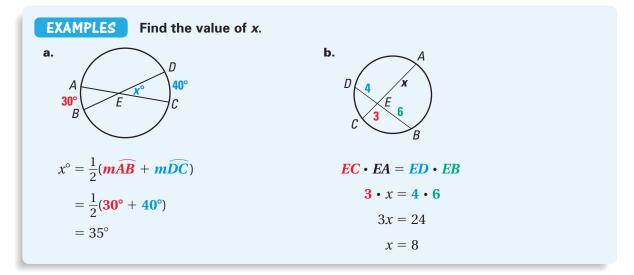

EXAMPLE

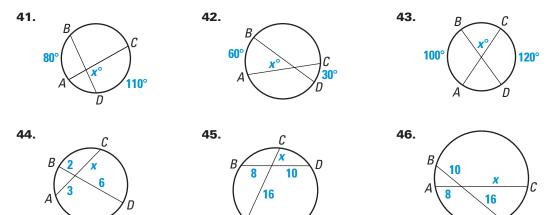
A C F


Examples on

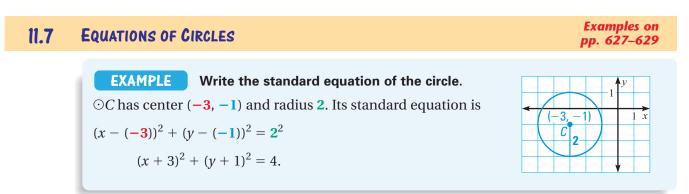
pp. 608–610

Find the value of *x*.


	Full Page View	Section	Page		Page	Section
Go to classzone.com	Table of Contents	*	<	Page 4 of 5	\triangleright	>>>>

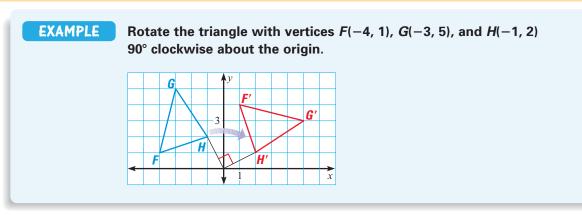

11.6 PROPERTIES OF CHORDS

Examples on pp. 620–622

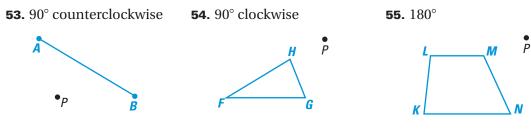

Д

Find the value of x.

	Full Page View	Section	Page		Page	Section
(i) Go to classzone.com	Table of Contents 🔍 🌖 🗐		<	Page 5 of 5	\triangleright	>>>


Write the standard equation of the circle with the given center and radius.

47. center (2, 5), radius 3 **48.** center (-4, -1), radius 4 **49.** center (5, -2), radius 7


Give the radius and the coordinates of the center of the circle with the given equation. Then graph the circle.

50. $(x + 4)^2 + (y - 1)^2 = 9$ **51.** $(x - 2)^2 + (y + 3)^2 = 16$ **52.** $x^2 + y^2 = 25$

11.8 ROTATIONS

Trace the figure and point P on paper. Use a straightedge and protractor to rotate the figure clockwise the given number of degrees about P.

56. Does the figure shown at the right have rotational symmetry? If so, describe the rotations that map the figure onto itself.

645

Examples on

pp. 633-635