Page <) Page 1 of 4

Chapter

Summary and Review

VOCABULARY

- conjecture, p. 8
- inductive reasoning, p. 8
- counterexample, p. 10
- undefined term, p. 14
- point, p. 14
- line, p. 14
- plane, p. 14
- postulate, p. 14
- collinear points, p. 15
- coplanar points, p. 15
- coplanar lines, p. 15

• segment, p. 16

Full Page View

(目)

- endpoint, p. 16
- ray, p. 16
- intersect, p. 22

• angle, p. 35

Section

 \ll

- sides of an angle, p. 35
- vertex of an angle, p. 35
- measure of an angle, p. 36
- degrees, p. 36
- congruent angles, p. 36
- acute angle, p. 36
- right angle, p. 36
- obtuse angle, p. 36
- straight angle, p. 36

VOCABULARY REVIEW

Fill in the blank.

- **1.** <u>?</u> are lines that lie in the same plane.
- **2.** A(n) <u>?</u> consists of two <u>?</u> that have the same endpoint.
- **3.** A(n) <u>?</u> is an unproven statement that is based on a pattern or observation.
- **4.** The endpoint of the rays that form an angle is called its <u>?</u>.
- **5.** Two or more figures _?____ if they have points in common.
- **6.** An angle that has a measure between 0° and 90° is called a(n) <u>?</u> angle.
- **7.** Points on the same line are <u>?</u> points.
- **8.** An angle that has a measure of 180° is called a(n) ? angle.
- **9.** Two angles that have the same measure are called <u>?</u> angles.
- **10.** A(n) _? is an example that shows a conjecture is false.
- **11.** An angle that has a measure between 90° and 180° is called a(n)<u>?</u> angle.
- **12.** Two segments that have the same length are called <u>?</u> segments.

- intersection, p. 22 • coordinate, p. 28
 - distance, p. 28
 - length, p. 28
 - between, p. 29

• congruent segments, p. 30

	Full Page View	Section Page	Page Section
Go to classzone.com	Table of Contents 9 9 1	(ک (کی	Page 2 of 4

Chapter Summary and Review continued

	I	Full Page View	Section	Page		Page	Section
Go to classzone.com	Table of Contents	E)	(کی	<	Page 3 of 4	\triangleright	>>>

Chapter Summary and Review continued

In Exercises 20–22, use the diagram at the right to decide whether the statement is *true* or *false*.

- **20.** Point *A* lies on line *m*.
- **21.** Point *E* lies on line *m*.
- **22.** Points *B*, *C*, and *D* are collinear.
- **23.** Draw four points *J*, *K*, *L*, and *M*, no three of which are collinear. Sketch \overrightarrow{LK} and add a point *N* on that line segment. Then sketch \overrightarrow{NJ} and \overrightarrow{NM} .

1.4 SKETCHING INTERSECTIONS

- **EXAMPLES** Use the diagram at the right.
- **a.** Name the intersection of lines \overrightarrow{AT} and \overrightarrow{BW} .

Lines \overrightarrow{AT} and \overrightarrow{BW} intersect at point *R*.

b. Name the intersection of planes *D* and *E*. Planes *D* and *E* intersect at \overrightarrow{BW} .

In Exercises 24–27, use the figure to fill in the blank.

- **24.** \overrightarrow{TU} and \overrightarrow{VU} intersect at <u>?</u>.
- **25.** Plane *PQR* and plane *UVS* intersect at _?___.
- **26.** Plane *RSV* and plane *QUV* intersect at <u>?</u>.
- **27.** Plane *QSV* and plane *TUV* intersect at <u>?</u>.

Visualize It! Sketch the figure described.

- 28. Two lines that are not coplanar and do not intersect
- **29.** A plane and two lines that intersect the plane at one point

E R B W D A

Examples on

pp. 22–24

	Full Page View	Section	Page		Page	Section
(1) Go to classzone.com	Table of Contents	**	<	Page 4 of 4	\triangleright	>>>>

Chapter Summary and Review continued

32. P(2, 3), Q(2, -5), R(9, -5) **33.** P(-5, 4), Q(1, 4), R(1, -2)

1.6 ANGLES AND THEIR MEASURES

Copy the angle, extend its sides, and use a protractor to measure it to the nearest degree. Then classify it as *acute, right, obtuse,* or *straight*.

Find the measure of the angle.

Examples on

pp. 35-37