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Infinite Series:  “Sequences”
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Introduction

 In this chapter, we will be dealing with infinite series 
which are sums that involve infinitely many terms.

 We can use them for many things such as approximating
trig functions and logarithms, solving differential 
equations, evaluating difficult integrals, constructing 
mathematical models of physical laws, and more.

 Since it is impossible to add up infinitely many numbers 
directly, we must define exactly what we mean by the 
sum of an infinite series.

 Also, it is important to realize that not all infinite series 
actually have a sum so we will need to find which series 
do have sums and which do not.



“Sequence” – everyday vs. 
mathematical applications

 In everyday language, the term 
“sequence” means a succession of things 
in a definite order – chronological order, 
size order, or logical order.

 In mathematics, the term “sequence” is 
commonly used to denote a succession of 
numbers whose order is determined by a 
rule or a function.



Definitions and Examples

 Infinite sequence – an unending succession of numbers 
called terms.

 Terms – numbers that have a definite order;  first term 
a1, second term a2, third term a3, fourth term a4, and so
on.  They are often written a1, a2, a3, a4, …, where the … 
indicates that the sequence continues indefinitely.

  Easy examples pattern general term
 1,2,3,4,… add one n

 2,4,6,8,… multiply by 2 2n

 1,-1,1,-1,… alternating +/- (-1) n-1



Example with Brace Notation



Graphs of Sequences

 Since sequences are functions, we will sometimes graph 
the sequence.

 Because the term numbers in the sequence below y = 
1/n are integers, the graph consists of a succession of 
isolated points instead of a continuous curve like y = 1/x
would be if you were not graphing a sequence.



Limits of a Sequence

 Since sequences are functions, we can discuss their 
limits.

 However, because a sequence is only defined for integer 
values, the only limit that makes sense is the limit of an 
as n approaches infinity.

 Examples:

Increases without 
bound (DIVERGE)

Oscillates between -1
and 1 (DIVERGE)

Increases toward a 
“limiting value” of 1 
(CONVERGE)

Tends toward a “limiting 
value” of 1 in an 
oscillatory fashion 
(CONVERGE)



Limits of a Sequence con’t

 Informally speaking, the limit of a sequence {an} is 
intended to describe how an behaves as n approaches 
infinity.

 More specifically, we will say that a sequence {an} 
approaches a limit L if the terms in the sequence 
eventually become arbitrarily close to L (see picture 
below and definition on following slide).



Converge and Diverge

 Look back at the examples on slide #8 to see which 
converge, which diverge, and why.

 If the general term of a sequence is f(n), where f(x) is a 
function defined on the entire interval [1, + ∞ ), then the 
values of f(n) can be viewed as “sample values” of f(x) 
taken at the positive integers.  Thus, 
 if f(x)      L as x     + ∞ , then f(n)       L as n       + ∞

 However, the converse is not true.  You cannot infer the 
same about f(x) given f(n).



Familiar Properties of Limits 
Apply to Sequences 



Converge or Diverge Examples
 To determine whether the following sequences converge 

or diverge, we will examine the limit as n approaches ∞ .

 a) 
�

2� + 1 n=1+ ∞

 Solution:  Divide the numerator and denominator by the 
highest power of n in the denominator (like chapter 1).

 lim
�→+ ∞

�

2� + 1
 = lim

�→+ ∞
� / �

(2� + 1) / �
 = 

lim
�→+ ∞

1

lim
�→+ ∞

(2 +
1
�
)
 = 

1
2 + 0

 = 
1
2
→

converges

 b) ( − 1)n + 1
�

2� + 1 n=1+ ∞

 Solution:  This is the same as a) except the ( − 1)n + 1 makes 
it oscillate between -1 and 1 times the answer we got in a). 
Therefore, the odd-numbered terms approach 

1
2
 and the 

even-numbered terms approach - 
1
2
	and the sequence 

diverges.



Converge or Diverge Examples con’t
 c) ( − 1)n + 1

1
�

n=1+ ∞

 Solution:  Like in b), the ( − 1)n + 1 makes this oscillate 
between positives and negatives.  However, the 1/n 
approaches 0.  Therefore, the terms approach 0 from both 
sides, making the limit 0. → converges to 0

 d) {8 – 2n} n=1+ ∞

 Solution:  lim
�→+ ∞

(8 – 2n)  = -∞  by end behavior or graphing.
Therefore, the sequence diverges.

 See example #4 on page 601 for more sequences.



Limit Example Using L’Hopital’s Rule

 Find the limit of the sequence {
�

��
} n=1+ ∞

 Solution:  lim
�→+ ∞

�

��
 = 

∞
∞

 which is indeterminate form.

 Therefore, we will use L’Hopital’s rule where you take the
derivative of the top and bottom separately and then 
evaluate the limit.

 lim
�→+ ∞

�

��
 = lim

�→+ ∞
�

��
  = lim

�→+ ∞
1
��

  = 
1
+ ∞

 = 0 → lim
�→+ ∞

�

��
 

= 0



Another Limit Example Using L’Hopital’s Rule
 Show that the lim

�→+ ∞
� �

 Solution: lim
�→+ ∞

� �  = ∞
1
∞  =	 ∞ 0 which is indeterminate 

form
 Therefore, we will use L’Hopital’s rule.
 The problem is that we do not currently have a fraction so 

we have some work to do first to get a fraction.

 lim
�→+ ∞

� �  = lim
�→+ ∞

�
1
�  = lim

�→+ ∞
����

1
�  by the inverse 

property

                           = lim
�→+ ∞

�
1
�
���  by the power property

 = lim
�→+ ∞

�
���

�  = � lim
�→+ ∞

���

�  = � lim
�→+ ∞

1
�
1  = �

1
+ ∞
1  = �0 = 1



Example Looking at Even-Numbered Terms 
and Odd-Numbered Terms Separately
 Sometimes the even-numbered and odd-numbered 

terms of a sequence behave sufficiently differently that it
is desirable to investigate their convergence separately.

 Example:  The sequence 
1
2
,	
1
3
,	
1
22
,	
1
32

, 
1
23

, 
1
33

, …converges to 

0 since the odd-numbered terms 
1
2
,
1
4
, 
1
8
, … converge to 0 

& the even-numbered terms 
1
3
, 
1
9
, 
1
27

, … also converge to 
0.

 Example 2:  The sequence 1,
1
2
,	1,
1
3
,	1,
1
4
,… diverges since 

the odd-numbered terms 1,1,1,… converge to 1 and the 
even-numbered terms 

1
2
,	
1
3
,	
1
4
,… converge to 0, which is 

different than 1.  That is why they diverge.



The Squeezing Theorem for Sequences

 This idea is very similar to the
squeezing theorem we 
learned in chapter 1 for 
trigonometry limits.

 We will use it to find limits of 
sequences that cannot be 
directly obtained and must 
therefore be compared to 
other sequences and 
“squeezed” between them.
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