
Section 9.1
Infinite Series:  “Sequences”



All graphics are attributed to:

 Calculus,10/E by Howard Anton, Irl Bivens, 
and Stephen Davis
Copyright © 2009 by John Wiley & Sons, 
Inc.  All rights reserved.”



Introduction

 In this chapter, we will be dealing with infinite series 
which are sums that involve infinitely many terms.

 We can use them for many things such as approximating
trig functions and logarithms, solving differential 
equations, evaluating difficult integrals, constructing 
mathematical models of physical laws, and more.

 Since it is impossible to add up infinitely many numbers 
directly, we must define exactly what we mean by the 
sum of an infinite series.

 Also, it is important to realize that not all infinite series 
actually have a sum so we will need to find which series 
do have sums and which do not.



“Sequence” – everyday vs. 
mathematical applications

 In everyday language, the term 
“sequence” means a succession of things 
in a definite order – chronological order, 
size order, or logical order.

 In mathematics, the term “sequence” is 
commonly used to denote a succession of 
numbers whose order is determined by a 
rule or a function.



Definitions and Examples

 Infinite sequence – an unending succession of numbers 
called terms.

 Terms – numbers that have a definite order;  first term 
a1, second term a2, third term a3, fourth term a4, and so
on.  They are often written a1, a2, a3, a4, …, where the … 
indicates that the sequence continues indefinitely.

  Easy examples pattern general term
 1,2,3,4,… add one n

 2,4,6,8,… multiply by 2 2n

 1,-1,1,-1,… alternating +/- (-1) n-1



Example with Brace Notation



Graphs of Sequences

 Since sequences are functions, we will sometimes graph 
the sequence.

 Because the term numbers in the sequence below y = 
1/n are integers, the graph consists of a succession of 
isolated points instead of a continuous curve like y = 1/x
would be if you were not graphing a sequence.



Limits of a Sequence

 Since sequences are functions, we can discuss their 
limits.

 However, because a sequence is only defined for integer 
values, the only limit that makes sense is the limit of an 
as n approaches infinity.

 Examples:

Increases without 
bound (DIVERGE)

Oscillates between -1
and 1 (DIVERGE)

Increases toward a 
“limiting value” of 1 
(CONVERGE)

Tends toward a “limiting 
value” of 1 in an 
oscillatory fashion 
(CONVERGE)



Limits of a Sequence con’t

 Informally speaking, the limit of a sequence {an} is 
intended to describe how an behaves as n approaches 
infinity.

 More specifically, we will say that a sequence {an} 
approaches a limit L if the terms in the sequence 
eventually become arbitrarily close to L (see picture 
below and definition on following slide).



Converge and Diverge

 Look back at the examples on slide #8 to see which 
converge, which diverge, and why.

 If the general term of a sequence is f(n), where f(x) is a 
function defined on the entire interval [1, + ∞ ), then the 
values of f(n) can be viewed as “sample values” of f(x) 
taken at the positive integers.  Thus, 
 if f(x)      L as x     + ∞ , then f(n)       L as n       + ∞

 However, the converse is not true.  You cannot infer the 
same about f(x) given f(n).



Familiar Properties of Limits 
Apply to Sequences 



Converge or Diverge Examples
 To determine whether the following sequences converge 

or diverge, we will examine the limit as n approaches ∞ .

 a) 
�

2� + 1 n=1+ ∞

 Solution:  Divide the numerator and denominator by the 
highest power of n in the denominator (like chapter 1).

 lim
�→+ ∞

�

2� + 1
 = lim

�→+ ∞
� / �

(2� + 1) / �
 = 

lim
�→+ ∞

1

lim
�→+ ∞

(2 +
1
�
)
 = 

1
2 + 0

 = 
1
2
→

converges

 b) ( − 1)n + 1
�

2� + 1 n=1+ ∞

 Solution:  This is the same as a) except the ( − 1)n + 1 makes 
it oscillate between -1 and 1 times the answer we got in a). 
Therefore, the odd-numbered terms approach 

1
2
 and the 

even-numbered terms approach - 
1
2
	and the sequence 

diverges.



Converge or Diverge Examples con’t
 c) ( − 1)n + 1

1
�

n=1+ ∞

 Solution:  Like in b), the ( − 1)n + 1 makes this oscillate 
between positives and negatives.  However, the 1/n 
approaches 0.  Therefore, the terms approach 0 from both 
sides, making the limit 0. → converges to 0

 d) {8 – 2n} n=1+ ∞

 Solution:  lim
�→+ ∞

(8 – 2n)  = -∞  by end behavior or graphing.
Therefore, the sequence diverges.

 See example #4 on page 601 for more sequences.



Limit Example Using L’Hopital’s Rule

 Find the limit of the sequence {
�

��
} n=1+ ∞

 Solution:  lim
�→+ ∞

�

��
 = 

∞
∞

 which is indeterminate form.

 Therefore, we will use L’Hopital’s rule where you take the
derivative of the top and bottom separately and then 
evaluate the limit.

 lim
�→+ ∞

�

��
 = lim

�→+ ∞
�

��
  = lim

�→+ ∞
1
��

  = 
1
+ ∞

 = 0 → lim
�→+ ∞

�

��
 

= 0



Another Limit Example Using L’Hopital’s Rule
 Show that the lim

�→+ ∞
� �

 Solution: lim
�→+ ∞

� �  = ∞
1
∞  =	 ∞ 0 which is indeterminate 

form
 Therefore, we will use L’Hopital’s rule.
 The problem is that we do not currently have a fraction so 

we have some work to do first to get a fraction.

 lim
�→+ ∞

� �  = lim
�→+ ∞

�
1
�  = lim

�→+ ∞
����

1
�  by the inverse 

property

                           = lim
�→+ ∞

�
1
�
���  by the power property

 = lim
�→+ ∞

�
���

�  = � lim
�→+ ∞

���

�  = � lim
�→+ ∞

1
�
1  = �

1
+ ∞
1  = �0 = 1



Example Looking at Even-Numbered Terms 
and Odd-Numbered Terms Separately
 Sometimes the even-numbered and odd-numbered 

terms of a sequence behave sufficiently differently that it
is desirable to investigate their convergence separately.

 Example:  The sequence 
1
2
,	
1
3
,	
1
22
,	
1
32

, 
1
23

, 
1
33

, …converges to 

0 since the odd-numbered terms 
1
2
,
1
4
, 
1
8
, … converge to 0 

& the even-numbered terms 
1
3
, 
1
9
, 
1
27

, … also converge to 
0.

 Example 2:  The sequence 1,
1
2
,	1,
1
3
,	1,
1
4
,… diverges since 

the odd-numbered terms 1,1,1,… converge to 1 and the 
even-numbered terms 

1
2
,	
1
3
,	
1
4
,… converge to 0, which is 

different than 1.  That is why they diverge.



The Squeezing Theorem for Sequences

 This idea is very similar to the
squeezing theorem we 
learned in chapter 1 for 
trigonometry limits.

 We will use it to find limits of 
sequences that cannot be 
directly obtained and must 
therefore be compared to 
other sequences and 
“squeezed” between them.





Rocksanna at Mono Lake


