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Exponential and Logarithmic Functions
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3.1 Exponential Functions and Their 
Graphs
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What You Should Learn

• Recognize and evaluate exponential functions 
with base a.

• Graph exponential functions with base a.

• Recognize, evaluate, and graph exponential 
functions with base e.

• Use exponential functions to model and solve 
real-life problems.
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Exponential Functions
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Exponential Functions

In this chapter you will study two types of nonalgebraic 
functions—exponential functions and logarithmic functions. 
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Exponential Functions

Note that in the definition of an exponential function, the 
base a = 1 is excluded because it yields

f (x) = 1x = 1.

This is a constant function, not an exponential function. 

Constant function
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Example 1 – Evaluating Exponential Functions

Try this on your calculator, but do not write it down.

Use a calculator to evaluate each function at the indicated 
value of x.

    Function   Value
a. f (x) = 2x           x = –3.1

b. f (x) = 2 

–xx = 

c. f (x) = 0.6xx =

d. f (x) = 1.052xx = 12
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Example 1 – Solution
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Graphs of Exponential Functions
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Graphs of Exponential Functions

The graphs of all exponential functions have similar 
characteristics, as shown in Example 2 on the next slide.
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Example 2 – Graphs of y = ax

In the same coordinate plane, sketch the graph of each 
function by hand.

a. f  (x) = 2xb. g (x) = 4x

Solution:
The table below lists some values
for each function. By plotting these
points and connecting them with 
smooth curves, you obtain the 
graphs shown in Figure 3.1.

Figure 3.1
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Example 2 – Solution

Note that both graphs are increasing. Moreover, the graph 
of g (x) = 4x  is increasing more rapidly than the graph of 
f  (x) = 2x .  You can tell if you compare the y values in the 
table below.

cont’d
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Graphs of Exponential Functions

Graph of f (x) = ax , a > 1              Graph of f (x) = a 

–x , a > 1

Domain:(,      )        Domain:(      ,      ) 

Range :(0 ,      )      Range :(0 ,      ) 

Intercept :(0 ,1)      Intercept :(0 ,1) 

Increasing on :(,      )        Increasing on :(    ,      )
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The Natural Base e
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The Natural Base e

For many applications, the convenient choice for a base is 
the irrational number

      e = 2.718281828 . . . .

This number is called the natural
base. The function

  f (x) = ex

is called the natural exponential
function and its graph is shown
in Figure 3.9.

Figure 3.9

The Natural Exponential Function
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Example 6 – Evaluating the Natural Exponential Functions

Use a calculator to evaluate the function

f (x) = ex

at each indicated value of x.
a. x = –2

b. x = 0.25

c. x = –0.4

d. x =
Do this on your calculator, but do not write it down.
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Example 6 – Solution
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Applications
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Applications

One of the most familiar examples of exponential growth is 
an investment earning continuously compounded interest. 

To accommodate quarterly, monthly, or daily compounding 
of interest, let n be the number of compoundings per year 
and let t be the number of years.
(The product nt represents the total number of times the 
interest will be compounded.)

Please read the next two slides, but do not write them 
down.
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Applications

Then the interest rate per compounding period is rn and 
the account balance after t years is 

When the number of compoundings n increases without 
bound, the process approaches what is called continuous 
compounding. In the formula for n compoundings per 
year, let m = nr . This produces

Amount (balance) with n 
compoundings per year
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Applications

As m increases without bound, we have

approaches e. So, for continuous compounding, it follows 
that

and you can write A = pert. This result is part of the reason 
that e is the “natural” choice for a base of an exponential 
function.
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Applications
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Example 8 – Finding the Balance for Compound Interest

A total of $9000 is invested at an annual interest rate of 
2.5%, compounded annually. Find the balance in the 
account after 5 years.

Solution:
In this case,
P = 9000, r =2.5% = 0.025, n = 1, t = 5.

Using the formula for compound interest with 
compoundings per year, you have

Formula for compound interest
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Example 8 – Solution

    
= 9000(1.025)5


 $10,182.67.

So, the balance in the account after 5 years will be about
$10,182.67.

cont’d

Substitute for P, r, n, and t.

Simplify.

Use a calculator.


