# Prentice Hall EARTH SCIENCE

# Tarbuck Lutgens

# Chapter Volcanoes and Other Igneous Activity

#### **Factors Affecting Eruptions**

- Factors that determine the violence of an eruption
  - Composition of the magma
  - Temperature of the magma
  - Dissolved gases in the magma

#### Viscosity

• **Viscosity** is the measure of a material's resistance to flow.

#### **Factors Affecting Eruptions**

- Viscosity
  - Factors affecting viscosity
    - Temperature (hotter magmas are less viscous)
    - Composition (silica content)
      - 1. High silica—high viscosity
        - (e.g., rhyolitic lava)
      - 2. Low silica—more fluid (e.g., basaltic lava)

#### **Factors Affecting Eruptions**

- Dissolved gases
  - Mainly water vapor and carbon dioxide
  - Gases expand near the surface
  - A **vent** is an opening in the surface of Earth through which molten rock and gases are released.
  - Provide the force to extrude lava

#### **Factors Affecting Eruptions**

- Dissolved gases
  - Violence of an eruption is related to how easily gases escape from magma
    - Gases escape easily from fluid magma.
    - Viscous magma produces a more violent eruption.

# **Magma Composition**

| Table 1 Magma Composition |                        |              |                        |                                                              |                                                     |
|---------------------------|------------------------|--------------|------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| Composition               | Silica Content         | Viscosity    | Gas Content            | Tendency to Form<br>Pyroclastics<br>(ejected rock fragments) | Volcanic Landform                                   |
| Basaltic                  | Least (~50%)           | Least        | Least (1–2%)           | Least                                                        | Shield Volcanoes<br>Basalt Plateaus<br>Cinder Cones |
| Andesitic                 | Intermediate<br>(~60%) | Intermediate | Intermediate<br>(3–4%) | Intermediate                                                 | Composite Cones                                     |
| Rhyolitic                 | Most (~70%)            | Greatest     | Most (4–6%)            | Greatest                                                     | Pyroclastic Flows<br>Volcanic Domes                 |

#### **Volcanic Material**

- Lava Flows
  - Basaltic lavas are more fluid.
  - Types of lava
    - Pahoehoe lava (resembles braids in ropes)
    - Aa lava (rough, jagged blocks)

#### Gases

- One to 5 percent of magma by weight
- Mainly water vapor and carbon dioxide

# Pahoehoe (Ropy) Lava Flow



## **Slow-Moving Aa Flow**



#### **Volcanic Material**

- Pyroclastic Materials
  - **Pyroclastic materials** is the name given to particles produced in volcanic eruptions.
  - The fragments ejected during eruptions range in size from very fine duct and volcanic ash (less than 2 millimeters) to pieces that weigh several tons.

#### **Volcanic Material**

- Pyroclastic Materials
  - Types of pyroclastic material
    - Ash and dust—fine, glassy fragments
    - Pumice—frothy, air-filled lava
    - Lapilli-walnut-sized particles
    - Cinders—pea-sized particles
  - Particles larger than lapilli
    - Blocks-hardened lava
    - Bombs—ejected as hot lava

#### **Types of Volcanoes**

- The three main volcanic types are shield volcanoes, cinder cones, and composite cones.
- Anatomy of a Volcano
  - A volcano is a mountain formed of lava and/or pyroclastic material.
  - A crater is the depression at the summit of a volcano or that which is produced by a meteorite impact.
  - A conduit, or pipe, carries gas-rich magma to the surface.

# Anatomy of a "Typical" Volcano



#### **Types of Volcanoes**

- Shield Volcanoes
  - Shield volcanoes are broad, gently sloping volcanoes built from fluid basaltic lavas.



- **Cinder cones** are small volcanoes built primarily of pyroclastic material ejected from a single vent.
  - Steep slope angle
  - Rather small in size
  - Frequently occur in groups

## **Shield Volcanoes**



## **Cinder Cones**



#### **Types of Volcanoes**

- Composite Cones
  - **Composite cones** are volcanoes composed of both lava flows and pyroclastic material.
    - Most are adjacent to the Pacific Ocean (e.g., Mt. Rainier).
    - Large size
    - Interbedded lavas and pyroclastics
    - Most violent type of activity

# **Composite Cones**



## Mount St. Helens Before and After the May 18, 1980, Eruption





## **Profiles of Volcanic Landforms**



## **Other Volcanic Landforms**

- Calderas
  - Calderas are large depressions in volcanoes.
  - Nearly circular
  - Formed by collapse
  - Size exceeds one kilometer in diameter

#### **Other Volcanic Landforms**

- Lava Plateaus
  - Fluid basaltic lava extruded from crustal fractures called fissures.

#### **Plutons**

- Plutons are intrusive igneous structures that result from the cooling and hardening of magma beneath the surface of Earth.
  - Intrusive igneous bodies, or plutons, are generally classified according to their shape, size, and relationship to the surrounding rock layers.

#### **Plutons**

- Sills and Laccoliths
  - Sills and laccoliths are plutons that form when magma is intruded close to the surface.
    - **Sills** resemble buried lava flows and may exhibit columnar joints.
    - Laccoliths are lens-shaped masses that arch overlying strata upward.

## Sills



#### **Plutons**



- **Dikes** are tabular-shaped intrusive igneous features that cut across preexisting rock layers.
- Many dikes form when magma from a large magma chamber invades fractures in the surrounding rocks.

### **Plutons**

- Batholiths
  - **Batholiths** are large masses of igneous rock that formed when magma intruded at depth, became crystallized, and subsequently was exposed by erosion.
  - An intrusive igneous body must have a surface exposure greater than 100 square kilometers to be considered a batholith.

## **Batholiths**



# **Types of Igneous Plutons**



#### **Origin of Magma**

- Geologists conclude that magma originates when essentially solid rock, located in the crust and upper mantle, partially melts.
- The most obvious way to generate magma from solid rock is to raise the temperature above the level at which the rock begins to melt.

## **Origin of Magma**

- Role of Heat
  - The geothermal gradient—Earth's natural temperature increases with depth but is not sufficient to melt rock in the lower crust and upper mantle
  - Additional heat is generated by
    - friction in subduction zones
    - crustal rocks heated during subduction
    - rising, hot mantle rocks

## **Origin of Magma**

- Role of Water
  - Causes rock to melt at a lower temperature
  - Plays an important role in subducting ocean plates

## **10.3** Plate Tectonics and Igneous Activity

#### **Convergent Plate Boundaries**

The basic connection between plate tectonics and volcanism is that plate motions provide the mechanisms by which mantle rocks melt to generate magma.

#### Ocean-Ocean

- Rising magma can form volcanic island arcs in an ocean (Aleutian Islands).
- Ocean-Continent
  - Rising magma can form continental volcanic arcs (Andes Mountains).

## **10.3** Plate Tectonics and Igneous Activity

#### **Divergent Plate Boundaries**

- The greatest volume of volcanic rock is produced along the oceanic ridge system.
  - Lithosphere pulls apart.
  - Less pressure on underlying rocks
  - Partial melting occurs
  - Large quantities of fluid basaltic magma are produced.

## **10.3** Plate Tectonics and Igneous Activity

#### **Intraplate Igneous Activity**

- Intraplate volcanism is igneous activity that occurs within a tectonic plate away from plate boundaries.
  - Most intraplate volcanism occurs where a mass of hotter than normal mantle material called a mantle plume rises toward the surface.
  - The activity forms localized volcanic regions called hot spots.
  - Examples include the Hawaiian Islands and the Columbia Plateau.