
Prentice Hall EARTH SCIENCE

Tarbuck Lutgens

Chapter Omega <thOmega</th> Omega Omega

Elements and the Periodic Table

Over 100 elements are known.

Atoms

- Smallest particles of matter
- Have all the characteristics of an element

- The nucleus is the central part of an atom and contains
 - protons, which have positive electrical charges
 - neutrons, which have neutral electrical charges

Atoms

- surround the nucleus
- contain electrons—negatively charged particles

The atomic number is the number of protons in the nucleus of an atom.

Model of an Atom

Isotopes

Isotopes of an element have the same number of protons but varying numbers of neutrons.
 Have different mass numbers: the sum of the neutrons plus protons

- Many isotopes are radioactive and emit energy and particles.
- The mass number is the number of neutrons and protons in the nucleus of an atom.

Why Atoms Bond

- When an atom's outermost energy level does not contain the maximum number of electrons, the atom is likely to form a chemical bond with one or more atoms.
 - A compound consists of two or more elements that are chemically combined in specific proportions.
 - An ion is an atom that gains or loses electrons.

Types of Chemical Bonds

- 1. **lonic bonds** form between positive and negative ions.
- 2. **Covalent bonds** form when atoms share electrons.
- 3. **Metallic bonds** form when metal ions share electrons.

2.2 Minerals

Definition of a Mineral

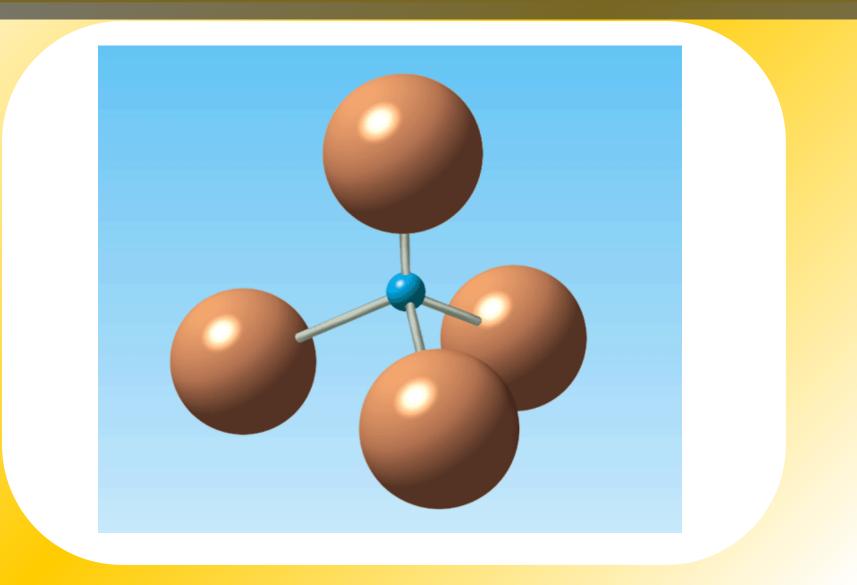
- 1. Naturally occurring
- 2. Solid substance
- 3. Orderly crystalline structure
- 4. Definite chemical composition
- 5. Generally considered inorganic

2.2 Minerals

How Minerals Form

- 1. Crystallization from magma
- 2. Precipitation
- 3. Pressure and temperature
- 4. Hydrothermal solutions

Minerals Formed as a Result of Crystallization of Magma



2.2 Minerals

Mineral Groups

- Can be classified based on their composition
 - 1. Silicates
 - Silicon and oxygen combine to form a structure called the silicon-oxygen tetrahedron. This silicon-oxygen tetrahedron provides the framework of every silicate mineral.

The Silicon-Oxygen Tetrahedron

Silicon-Oxygen Chains, Sheets, and Three-Dimensional Networks

Silicate Structures	
Single tetrahedron	
Single chains	
Double chains	
Sheets	
Three- dimensional networks	

2.2 Minerals

Mineral Groups

- 2. Carbonates
 - Minerals that contain the elements carbon, oxygen, and one or more other metallic elements
- 3. Oxides
 - Minerals that contain oxygen and one or more other elements, which are usually metals

2.2 Minerals

Mineral Groups

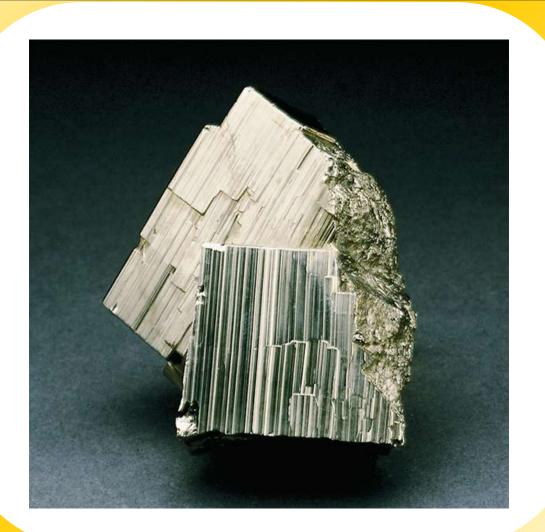
- 4. Sulfates and Sulfides
 - Minerals that contain the element sulfur
- 5. Halides
 - Minerals that contain a halogen ion plus one or more other elements
- 6. Native elements
 - Minerals that exist in relatively pure form

Sulfides

Native Copper

Color

 Small amounts of different elements can give the same mineral different colors.


Streak

 Streak is the color of a mineral in its powdered form.

Luster

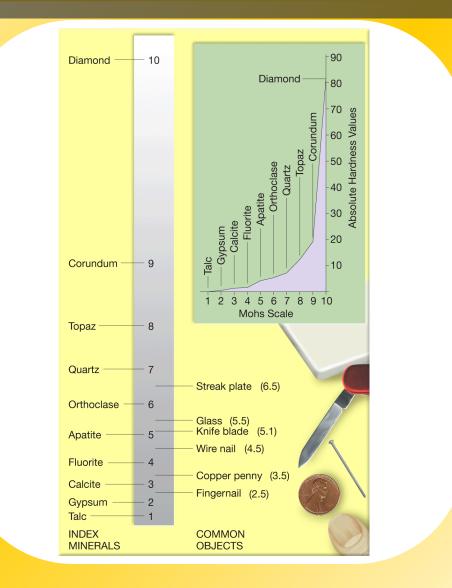
 Luster is used to describe how light is reflected from the surface of a mineral.

Pyrite (Fool's Gold) Displays Metallic Luster.

Crystal Form

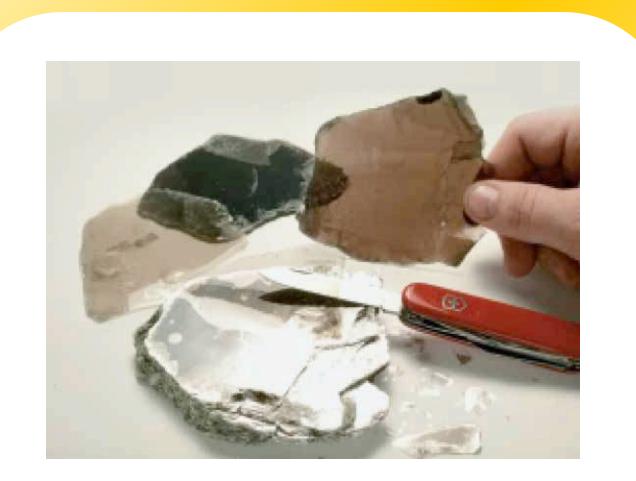
 Crystal form is the visible expression of a mineral's internal arrangement of atoms.

Quartz Often Exhibits Good Crystal Form.


Hardness

 Hardness is a measure of the resistance of a mineral to being scratched.

Mohs scale consists of 10 minerals arranged from 10 (hardest) to 1 (softest).


Mohs Scale of Hardness

Cleavage

 Cleavage is the tendency of a mineral to cleave, or break, along flat, even surfaces.

Mica Has Cleavage in One Direction

Fracture

 Minerals that do not show cleavage when broken are said to fracture.

Fracture—the uneven breakage of a mineral

Conchoidal Fracture

Density

 Density is a property of all matter that is the ratio of an object's mass to its volume.

Distinctive Properties of Minerals

 Some minerals can be recognized by other distinctive properties.