PRE-CALCULUS: by Finney, Demana, Watts and Kennedy

Chapter 4: Trigonometric Functions 4.2: Trigonometric Functions of Acute Angles

What you'll Learn About Right Triangle Trigonometry/ Two Famous Triangles Evaluating Trig Functions with a calculator/Applications of right triangle trig
The six trigonometric functions

Assume that θ is an acute a conditions. Evaluate the re-	angle in a right triangle satisfying the given emaining trigonometric functions.	Evaluate using a calculator. Make sure your calculator is in the mode. Give answers to 3 decimal places and then draw the tria represents the situation.		
A) $\sin \theta = \frac{4}{9}$	B) $\cos \theta = \frac{2}{9}$	A) sin 53°	B) $\cos \frac{2\pi}{5}$	
C) $\tan \theta = \frac{4}{9}$	D) $\cot \theta = \frac{2}{9}$	C) tan 154 °	D) $\cot \frac{\pi}{9}$	
E) $\csc \theta = \frac{10}{7}$	F) $\sec \theta = \frac{4}{3}$	E) csc 220°	F) $\sec \frac{8\pi}{5}$	

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy

Chapter 4: Trigonometric Functions 4.3: The circular functions What you'll Learn About
Trig functions of any angle/Trig functions of real numbers
Periodic Functions/The Unit Circle Point P is on the terminal side of angle θ . Evaluate the six trigometric functions for θ . B) (-3, 4) A) (5,4)C) (-2, -5) D) (-4, -1) E) (0, -3)F) (3, 0)

Determine the sign (+ or -) of the given value without the use of a calculator. B) $\cos \frac{2\pi}{5}$ A) sin 53° D) $\cot \frac{\pi}{9}$ C) tan 154° E) csc 220°

8 | P a g e

Evaluate without using a calculator

A) Find $\sin \theta$ and $\tan \theta$ if $\cos \theta = \frac{3}{4}$ and $\cot \theta < 0$

B) Find $\sec \theta$ and $\csc \theta$ if $\cot \theta = \frac{-6}{5}$ and $\sin \theta > 0$

Unit Circle, Fill in the blank

Evaluate without using a calculator by using ratio	os in a reference triangle.
A) sin120°	B) $\cos \frac{2\pi}{3}$
C) $\tan \frac{13\pi}{4}$	D) $\cot \frac{-13\pi}{6}$
E) $\csc \frac{7\pi}{4}$	F) $\sec \frac{23\pi}{6}$
l .	

Find sine, cosine, and tangent for the given angle. A) 90° D) $\frac{-7\pi}{2}$ C) 6π

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy
Chapter 4: Trigonometric Functions

What you'll Learn About

Inverse Trigonometric Functions and their Graphs

The graph of $y = \sin x$

The graph of $y = \sin^{-1} x = \arcsin x$

16 | P a g e

The Unit Circle and Inverse Functions

Find the exact value		
A) $\cos^{1}\frac{\sqrt{3}}{2}$	B) $\cos^{-1}\frac{1}{2}$	C) $\cos^{-1}\left(\frac{-1}{2}\right)$
$D) \sin^{-1}\frac{-\sqrt{3}}{2}$	$E) \sin^{-1}\frac{1}{2}$	$F) \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$
G) tan ⁻¹ (1)	H) $tan^{-1}(\sqrt{3})$	$I) \tan^{3} \left(\frac{-1}{\sqrt{3}} \right)$
J) cos (0)	<i>K</i>) sin⁻¹(−1)	L) $tan^{1}(0)$

Use a calculator to find the approximate value in degrees. Draw the triangle that represents the situation. A) arccos (.456) B) arcsin (-.456) C) arctan (-5.768) Use a calculator to find the approximate value in radians. Draw the triangle that represents the situation. A) arcsin (.456) B) arccos (-.456) C) arctan (-5.768)

Find the exact value without a	calculator.
$A) \sin(\cos^{-1}(1/2))$	$B) \cos(\tan^{-1}(0))$
C) $\tan\left(\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$	$D) \sin(\tan^{-1}(-\sqrt{3}))$
$E) \cos^{-1}\left(\sin\left(\frac{\pi}{4}\right)\right)$	F) $\sin^{-1}\left(\cos\left(\frac{\pi}{6}\right)\right)$
(4))	′ ((6))

1.	$\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right) =$	2.	$\sin\left(\tan^{-1}\left(\frac{\sqrt{2}}{2}\right)\right) =$
3.	$\cot\left(\cos^{-1}\frac{-1}{4}\right) =$	4.	$\csc\left(\sin^{-1}\frac{-2}{3}\right) =$

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy Solving Trigonometric Equations

What you'll Learn About

Solve each trigonometric equation for θ on the interval $[0,2\pi]$. Then give a formula for all possible angles that could be a solution of the equation.

A)
$$\sin \theta = \frac{\sqrt{2}}{2}$$

B)
$$\cos \theta = \frac{-1}{2}$$

C)
$$\sin \theta = 1$$

D)
$$\cos\theta = 0$$

E)
$$\tan \theta = \sqrt{3}$$

F)
$$\tan \theta = -1$$

Solve each trigonometric equation for θ on the interval $[0,2\pi]$.

A)
$$\cos 2\theta = \frac{1}{2}$$

B)
$$\sin 3\theta = \frac{1}{2}$$

C)
$$\cos \frac{\theta}{3} = \frac{\sqrt{3}}{2}$$

D)
$$\tan\left(\frac{\theta}{2} + \frac{\pi}{3}\right) = 1$$

E)
$$\sin \theta = .4$$

F)
$$\cos \theta = -.2$$

	A) $\sqrt{2}\cos\theta - 1 = 0$	B) $\sqrt{3}\csc\theta - 2 = 0$
	$C) \qquad 4\sin^2\theta - 1 = 0$	D) $(3\cos^2\theta - 1)(\cos^2\theta - 3) = 0$
	E) $3 \tan^2 \theta - 1 = 0$	F) $\cos^2 \theta = 3\sin^2 \theta$
25 P a g e		

G) $2\cos^2\theta + \cos\theta = 0$	H) $2\sin\theta\cos\theta = \cos\theta$
-, 2003 0 1 003 0 - 0	, 25.110 5000 5000
I) $\csc^2 \theta - \csc \theta = 2$	$J) \sin^3 \theta = \sin \theta$

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy

Chapter 4: Trigonometric Functions

4.4: Graphs of sine and cosine

- What you'll Learn About

 The basic waves revisited/Sinusoids and Transformations

The graph of $y = \sin x$

The graph of $y = \cos x$

Find the amplitude of the function and use the language of transformations to describe how the graph of the function is related to the graph of $y = \sin x$

A)
$$y = 3\sin x$$

B)
$$y = \frac{3}{4} \sin x$$

C)
$$y = -5\sin x$$

Find the amplitude of the function and use the language of transformations to describe how the graph of the function is related to the graph of $y = \sin x$

A)
$$y = 2\cos x$$

$$B) y = \frac{5}{3}\cos x$$

C)
$$y = -2\cos x$$

Find the period of the function and use the language of transformations to describe how the graph of the function is related to the graph of y = cosx

A)
$$y = \cos(2x)$$

B)
$$y = \cos \frac{y}{2}$$

A)
$$y = \cos(2x)$$
 B) $y = \cos \frac{x}{2}$ C) $y = \cos(\frac{-3x}{4})$

Graph 1 period of the function without using your calculator.

$$A) \quad y = 3\sin\frac{x}{2}$$

$$y = 5\sin\left(-2x\right)$$

29 | P a g e

Find the coordinates of the maximum, minimum, and zeros of the function on the interval $[-2\pi, 2\pi]$.

A)
$$y = 4 \sin x$$

$$y = -2\cos\left(\frac{x}{3}\right)$$

Graph 1 period of the function without using your calculator.

A)
$$y = -2\cos\frac{3\pi x}{4}$$
 $y = 3\sin\left(\frac{\pi x}{6}\right)$

$$y = 3\sin\left(\frac{\pi x}{6}\right)$$

Determine the phase shift for the function and the sketch the graph.

A)
$$y = \cos\left(x - \frac{\pi}{6}\right)$$

B)
$$y = \sin\left(x + \frac{\pi}{3}\right)$$

Determine the vertical shift for the function and the sketch the graph.

A)
$$y = \cos x - 2$$

B)
$$y = \sin x + 3$$

Determine the vertical shift and phase shift of the function and then sketch the graph

A)
$$y = \cos\left(x + \frac{\pi}{6}\right) - 1$$

B)
$$y = \sin\left(x - \frac{\pi}{3}\right) + 2$$

$$Amp = A = \frac{Max - Min}{2}$$

Horizontal Stretch/Shrink

$$B = \frac{2\pi}{p}$$

How to choose an appropriate model based on the behavior at some given time, T.

 $y = A \cos B(t - T) + C$ if at time T the function attains a maximum value

 $y = -A \cos B(t - T) + C$ if at time T the function attains a minimum value

 $y = A \sin B(t - T) + C$ if at time T the function halfway between a minimum and a maximum value

 $y = -A \sin B(t - T) + C$ if at time T the function halfway between a maximum and a minimum value

State the Amplitude and period of the sinusoid, and relative to the basic function, the phase shift and vertical translation.

Vertical = (C) =
$$\frac{\text{Max} + \text{Min}}{2}$$
period = p

A) $y = 3\sin\left(x - \frac{\pi}{4}\right) + 2$

B)
$$y = -2\cos\left(3x - \frac{\pi}{4}\right) - 4$$

$$C) y = 5 \sin 4\pi x + 6$$

$Amp = A = \frac{Max - Min}{2}$	Construct a sinusoid with the given amplitude and period that goes through the given point.
$Vertical = (C) = \frac{Max + Min}{2}$	A) Amp: 4, period 4π , point $(0,0)$
period = p	
Horizontal Stretch/Shrink	
$B = \frac{2\pi}{p}$	
How to choose an appropriate model based on the behavior at some given time, T.	
$y = A \cos B(t - T) + C$ if at time T the function attains a maximum value	B) Amp: 2.5, period $\frac{\pi}{5}$, point $(2,0)$
$y = -A \cos B(t - T) + C$ if at time T the function attains a minimum value	
y = A sin B(t - T) + C if at time T the function halfway between a minimum and a maximum value	
$y = -A \sin B(t - T) + C$ if at time T the function halfway between a maximum and a minimum value	

| Page

Example 7: Calculating the Ebb and Flow of Tides
One particular July 4 th in Galveston, TX, high tide occurred at 9:36 am. At that time the water at the end of the 61 st Street Pier was 2.7 meters deep. Low tide occurred at 3:48 p.m, at which time the water was only 2.1 meters deep. Assume that the depth of the water is a sinusoidal function of time with a period of half a lunar day (about 12 hrs 24 min)
a) Model the depth, D, as a sinusoidal function of time, t, algebraically then graph the function.
b) At what time on the 4 th of July did the first low tide occur.
c) What was the approximate depth of the water at 6:00 am and at 3:00 pm?
d) What was the first time on July 4 th when the water was 2.4 meters deep?

80) Temperature Data: The normal monthly Fahrenheit temperatures in Helena, MT, are shown in the table below (month 1 = January)

Model the temperature T as a sinusoidal function of time using 20 as the minimum value and 68 as the maximum value. Support your answer graphically by graphing your function with a scatter plot.

M												
T	20	26	35	44	53	61	68	67	56	45	31	21

Determine the sinusoidal model from the graph(No phase shift)

37 | Page

PRE-CALCULUS: by Finney, Demana, Watts and Kennedy

Chapter 4: Trigonometric Functions

4.5: Graphs of Tan/Cot/Sec/Csc

What you'll Learn About • The graphs of the other 4 trig functions

The graph of $y = \csc x$

The graph of $y = \sec x$

Describe the graph of the function the vertical asymptotes and graph 2	in terms of a basic trigonometric function. Locate periods of the function.
A) $y = \sec(4x)$	$y = 2\sec\frac{4x}{3}$
	(1)
C) $y = -\sec(x) + 2$	$D. y = 2\sec\left(\frac{1}{2}x - 2\right)$

Describe the graph of the function in terms of a basic trigonometric function. Locate the vertical asymptotes and graph 2 periods of the function. A) $y = \csc\left(\frac{x}{3}\right)$ B) $y = 4\csc 2\pi x$ C) $y = -\csc(x) + 1$

Describe the graph of the function in terms of a basic trigonometric function. Locate the vertical asymptotes and graph 2 periods of the function.

A)
$$y = 2\tan(3x)$$

$$B) \quad y = 5 \tan \left(\pi x - \frac{\pi}{3} \right)$$

$$C) \quad y = -\tan\left(2\left(x - \frac{\pi}{4}\right)\right) + 2$$

Describe the transformations required to obtain the graph of the given function form a basic trigonometric graph.

A)
$$y = 2\cot(3x)$$

$$B) \quad y = 5\cot\left(\pi x - \frac{\pi}{3}\right)$$

C)
$$y = -3\cot\frac{1}{2}(x-1)+1$$