Chapter 10

- **2. a.** The large cube is made up of $3 \cdot 3 \cdot 3$ small cubes. Because each small cube contains \$3, the total amount of money in the large cube is $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^4$.
 - **b.** $3^4 = 81$

There is \$81 in the large cube.

3. a. $10^{26} = 100,000,000,000,000,000,000,000,000$

b. $10^{21} = 1,000,000,000,000,000,000,000$

The diameter of the Milky Way Galaxy is 1.000.000.000.000.000.000.000.000 meters.

This can be written as one sextillion meters.

c. $10^{16} = 10,000,000,000,000,000$

The diameter of the solar system is 10,000,000,000,000,000,000 meters.

This can be written as ten quadrillion meters.

d. $10^7 = 10,000,000$

The diameter of Earth is 10,000,000 meters.

This can be written as ten million meters.

e. $10^6 = 1,000,000$

The length of the Lake Erie shoreline is 1,000,000 meters.

This can be written as one million meters.

f. $10^5 = 100.000$

The width of Lake Erie is 100,000 meters.

This can be written as one hundred thousand meters.

4. Wives: 7¹

Sacks:
$$7 \cdot 7 = 7^2$$

Cats: $7 \bullet 7 \bullet 7 = 7^3$

Kits: $7 \bullet 7 \bullet 7 \bullet 7 = 7^4$

You can use exponents to write the product of repeated factors.

Sample answer: The formula for the volume of a cube, $V = s^3$, is an example of how exponents are used in real life. Exponents are also used in measuring astronomical distances.

10.1 On Your Own (pp. 412-413)

1.
$$\frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4}$$

Because $\frac{1}{4}$ is used as a factor 5 times, its exponent is 5.

So,
$$\frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4} = \left(\frac{1}{4}\right)^5$$
.

2. $0.3 \cdot 0.3 \cdot 0.3 \cdot 0.3 \cdot x \cdot x$

Because 0.3 is used as a factor 4 times, its exponent is 4. Because *x* is used as a factor 2 times, its exponent is 2.

So,
$$0.3 \cdot 0.3 \cdot 0.3 \cdot 0.3 \cdot x \cdot x = (0.3)^4 x^2$$

3.
$$-5^4 = -(5 \bullet 5 \bullet 5) = -625$$

4.
$$\left(-\frac{1}{6}\right)^3 = \left(-\frac{1}{6}\right) \bullet \left(-\frac{1}{6}\right) \bullet \left(-\frac{1}{6}\right) = -\frac{1}{216}$$

5.
$$|-3^3 \div 27| = |-27 \div 27| = |-1| = 1$$

6.
$$9 - 2^5 \bullet 0.5 = 9 - 32 \bullet 0.5 = 9 - 16 = -7$$

7. The diameter is 1.8 meters, so the radius is 0.9 meter.

Inner sphere:
$$V = \frac{4}{3}\pi r^3$$

= $\frac{4}{3}\pi (0.9)^3$
= $\frac{4}{3}\pi (0.729)$
= 0.972π

Outer sphere:
$$\frac{9}{2}\pi = 4.5\pi$$

The volume of the inflated space is $4.5\pi - 0.972\pi = 3.528\pi$, or about 11.08 cubic meters.

10.1 Exercises (pp. 414-415)

Vocabulary and Concept Check

- 1. -3^4 is the negative of 3^4 , so the base is 3, the exponent is 4, and its value is -81. $(-3)^4$ has a base of -3, an exponent of 4, and a value of 81.
- **2.** The second one does not belong because it is an incorrect statement about the expression. The power is the entire expression 5³.

Practice and Problem Solving

3. 3 • 3 • 3 • 3

Because 3 is used as a factor 4 times, the exponent is 4. So, $3 \cdot 3 \cdot 3 \cdot 3 = 3^4$.

4. (-6) • (-6)

Because -6 is used as a factor 2 times, the exponent is 2.

So,
$$(-6) \bullet (-6) = (-6)^2$$
.

Chapter 10

5.
$$\left(-\frac{1}{2}\right) \bullet \left(-\frac{1}{2}\right) \bullet \left(-\frac{1}{2}\right)$$

Because $-\frac{1}{2}$ is used as a factor 3 times, the exponent is 3.

So,
$$\left(-\frac{1}{2}\right) \bullet \left(-\frac{1}{2}\right) \bullet \left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^3$$
.

6.
$$\frac{1}{3} \bullet \frac{1}{3} \bullet \frac{1}{3}$$

Because $\frac{1}{3}$ is used as a factor 3 times, the exponent is 3.

So,
$$\frac{1}{3} \bullet \frac{1}{3} \bullet \frac{1}{3} = \left(\frac{1}{3}\right)^3$$
.

7.
$$\pi \bullet \pi \bullet \pi \bullet x \bullet x \bullet x \bullet x$$

Because π is used as a factor 3 times, the exponent is 3. Because x is used as a factor 4 times, the exponent is 4.

So,
$$\pi \bullet \pi \bullet \pi \bullet x \bullet x \bullet x \bullet x = \pi^3 x^4$$
.

8.
$$(-4) \bullet (-4) \bullet (-4) \bullet y \bullet y$$

Because -4 is used as a factor 3 times, the exponent is 3. Because y is used as a factor 2 times, the exponent is 2.

So,
$$(-4) \bullet (-4) \bullet (-4) \bullet y \bullet y = (-4)^3 y^2$$
.

Because 6.4 is used as a factor 4 times, the exponent is 4. Because *b* is used as a factor 3 times, the exponent is 3.

So,
$$6.4 \cdot 6.4 \cdot 6.4 \cdot 6.4 \cdot b \cdot b \cdot b = (6.4)^4 b^3$$
.

10.
$$(-t) \bullet (-t) \bullet (-t) \bullet (-t) \bullet (-t)$$

Because -t is used as a factor 5 times, the exponent is 5.

So,
$$(-t) \bullet (-t) \bullet (-t) \bullet (-t) \bullet (-t) = (-t)^5$$
.

11.
$$5^2 = 5 \bullet 5 = 25$$

12.
$$-11^3 = -(11 \bullet 11 \bullet 11) = -1331$$

13.
$$(-1)^6 = (-1) \bullet (-1) \bullet (-1) \bullet (-1) \bullet (-1) = 1$$

14.
$$\left(\frac{1}{2}\right)^6 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{64}$$

15.
$$\left(-\frac{1}{12}\right)^2 = \left(-\frac{1}{12}\right) \bullet \left(-\frac{1}{12}\right) = \frac{1}{144}$$

16.
$$-\left(\frac{1}{9}\right)^3 = -\left(\frac{1}{9} \bullet \frac{1}{9} \bullet \frac{1}{9}\right) = -\frac{1}{729}$$

17. The negative sign is not part of the base; $-6^2 = -(6 \bullet 6) = -36.$

$$-6^{\circ} = -(6 \bullet 6) = -36$$

The prime factorization of 675 is $5 \bullet 5 \bullet 3 \bullet 3 \bullet 3$, or $5^2 \bullet 3^3$.

19.
$$-\left(\frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4}\right)$$

Because $\frac{1}{4}$ is used as a factor 4 times, the exponent is 4.

So,
$$-\left(\frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4} \bullet \frac{1}{4}\right) = -\left(\frac{1}{4}\right)^4$$
.

20. The largest doll is 12 inches and the other 3 are $\frac{7}{10}$ the

height of the next larger doll. Use $\frac{7}{10}$ as a factor 3 times.

So, an expression for the height of the smallest doll is

$$12 \bullet \frac{7}{10} \bullet \frac{7}{10} \bullet \frac{7}{10} = 12 \bullet \left(\frac{7}{10}\right)^3.$$

$$12 \bullet \left(\frac{7}{10}\right)^3 = 12 \bullet \frac{343}{1000} = 4.116$$

The height of the smallest doll is 4.116 inches.

21.
$$5 + 3 \cdot 2^3 = 5 + 3 \cdot 8 = 5 + 24 = 29$$

22.
$$2 + 7 \cdot (-3)^2 = 2 + 7 \cdot 9 = 2 + 63 = 65$$

23.
$$(13^2 - 12^2) \div 5 = (169 - 144) \div 5 = 25 \div 5 = 5$$

24.
$$\frac{1}{2}(4^3 - 6 \cdot 3^2) = \frac{1}{2}(64 - 6 \cdot 9)$$

= $\frac{1}{2}(64 - 54)$
= $\frac{1}{2}(10)$
= 5

25.
$$\left| \frac{1}{2} (7 + 5^3) \right| = \left| \frac{1}{2} (7 + 125) \right| = \left| \frac{1}{2} (132) \right| = |66| = 66$$

26.
$$\left| \left(-\frac{1}{2} \right)^3 \div \left(\frac{1}{4} \right)^2 \right| = \left| -\frac{1}{8} \div \frac{1}{16} \right| = \left| -\frac{1}{8} \bullet \frac{16}{1} \right| = \left| -2 \right| = 2$$

Chapter 10

27.	h	1	2
	$2^{h}-1$	$2^1 - 1 = 1$	$2^2 - 1 = 3$
	2^{h-1}	$2^{1-1} = 2^0 = 1$	$2^{2-1} = 2^1 = 2$

h	3	4
$2^{h}-1$	$2^3 - 1 = 7$	$2^4 - 1 = 15$
2^{h-1}	$2^{3-1} = 2^2 = 4$	$2^{4-1} = 2^3 = 8$

h	5	
$2^{h}-1$	$2^5 - 1 = 31$	
2^{h-1}	$2^{5-1} = 2^4 = 16$	

You should choose getting paid $2^h - 1$ dollars because when you work more than 1 hour, you will get paid more than the other option.

28. a. $C = 100(0.99988)^t = 100(0.99988)^4 \approx 99.95$

After 4 years, the amount of carbon-14 remaining is about 99.95 grams.

b. percent remaining =
$$\frac{\text{amount remaining}}{\text{original amount}}$$

= $\frac{99.95}{100}$
= 99.95%

After 4 years, 99.95% of the carbon-14 remains.

- 29. a. To travel from A-440 to A, it takes 12 notes.
 - **b.** $F = 440(1.0595)^n = 440(1.0595)^{12} \approx 880$

The frequency of A is about 880 vibrations per second.

c. *Sample answer:* For a 12-note increase, the frequency approximately doubles.

Fair Game Review

- **30.** The statement $8 \bullet x = x \bullet 8$ represents the Commutative Property of Multiplication.
- **31.** The statement $(2 \bullet 10)x = 2(10 \bullet x)$ represents the Associative Property of Multiplication.
- **32.** The statement $3(x \cdot 1) = 3x$ represents the Identity Property of Multiplication.

33. B;
$$\frac{x}{18} = \frac{24}{27}$$

$$\frac{x}{18} = \frac{8}{9}$$

$$x = 16$$

Section 10.2

10.2 Activity (pp. 416-417)

1. a.

Product	Repeated Multiplication Form	Power
$2^2 \bullet 2^4$	2 • 2 • 2 • 2 • 2 • 2	2^{6}
$\left(-3\right)^{2} \bullet \left(-3\right)^{4}$	$(-3) \bullet (-3) \bullet (-3)$ $\bullet (-3) \bullet (-3) \bullet (-3)$	$(-3)^6$
$7^3 \bullet 7^2$	7 • 7 • 7 • 7 • 7	7 ⁵
5.1 ¹ • 5.1 ⁶	5.1 • 5.1 • 5.1 • 5.1 • 5.1 • 5.1 • 5.1	5.17
$(-4)^2 \bullet (-4)^2$	$(-4) \bullet (-4)$ $\bullet (-4) \bullet (-4)$	$(-4)^4$
10 ³ • 10 ⁵	10 • 10 • 10 • 10 • 10 • 10 • 10 • 10	108
$\left(\frac{1}{2}\right)^5 \bullet \left(\frac{1}{2}\right)^5$	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$	$\left(\frac{1}{2}\right)^{10}$

b. To find the product of two powers with the same base, add their exponents.

$$a^m \bullet a^n = a^{m+n}$$

c.
$$2^2 \cdot 2^4 = 2^{2+4} = 2^6$$

$$(-3)^2 \bullet (-3)^4 = (-3)^{2+4} = (-3)^6$$

$$7^3 \bullet 7^2 = 7^{3+2} = 7^5$$

$$5.1^1 \bullet 5.1^6 = 5.1^{1+6} = 5.1^7$$

$$(-4)^2 \bullet (-4)^2 = (-4)^{2+2} = (-4)^4$$

$$10^3 \bullet 10^5 = 10^{3+5} = 10^8$$

$$\left(\frac{1}{2}\right)^5 \bullet \left(\frac{1}{2}\right)^5 = \left(\frac{1}{2}\right)^{5+5} = \left(\frac{1}{2}\right)^{10}$$

Using the rule to simplify the products results in the values in the third column of the table in part (a).

d.
$$2^6 = 64$$

$$(-3)^6 = 729$$

$$7^5 = 16,807$$

$$5.1^7 \approx 89,741.1$$

$$(-4)^4 = 256$$

$$10^8 = 100,000,000$$

$$\left(\frac{1}{2}\right)^{10} = \frac{1}{1024}$$