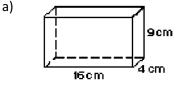
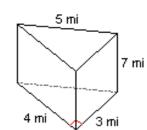

Chapter 12: Surface Area and Volume

Surface Area of Prisms and Cylinders

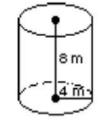

PRISM	a polyhedron with two bases	
F MJIVI	(bases are the congruent faces)	
	the faces of a prism that are parallelograms formed	
LATERAL FACE	by connecting the corresponding vertices of the	
	bases of the prism.	
	the segments connecting the corresponding	
LATERAL EDGE	vertices of the bases of a prism	
HEIGHT	Perpendicular distance between the bases	
(altitude)		
(annuae)		
	Altitude of an oblique prism	
SLANT HEIGHT	(oblique prisms are "leaning" or "slanted")	
	a prism in which each lateral edge is perpendicular	
RIGHT PRISM	to both bases	



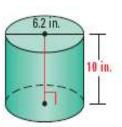
	SA = 2B + Ph	
SURFACE AREA OF A RIGHT PRISM	B (area of the base), P (perimeter of the base),	
	h (distance between the bases)	

b)

EX 2: Find the surface area of the right prisms.

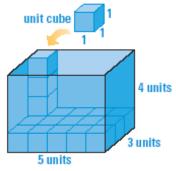


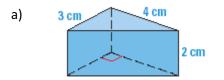
EX 3: Find the surface area of a right rectangular prism with a height of 2 inches, a length of 5 inches and a width of 6 inches.

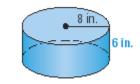

CYLINDER	Solid with congruent circular bases	
LATERAL AREA	Area of the curved surface	
SURFACE AREA OF A RIGHT CYLINDER	SA = $2\pi r^2 + 2\pi rh$ r (radius of circle), h (distance between circles)	

EX 6: Find the surface area of the right cylinders.

a)

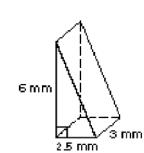

1


Volume of Prisms and Cylinders


VOUME OF A CUBE	$V = s^3$	
VOLUME OF A PRISM B (are of the base), h (distance between bases)		
VOLUME OF A CYLINDER r (radius of circle), h (distance between circles)		

EX 1: The box shown is 5 units long, 3 units wide, and 4 units high. How many unit cubes will fit in the box? _____

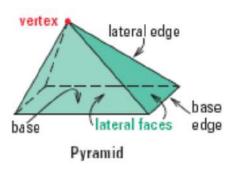
EX 2: Find the volume of the right prism and right cylinder.

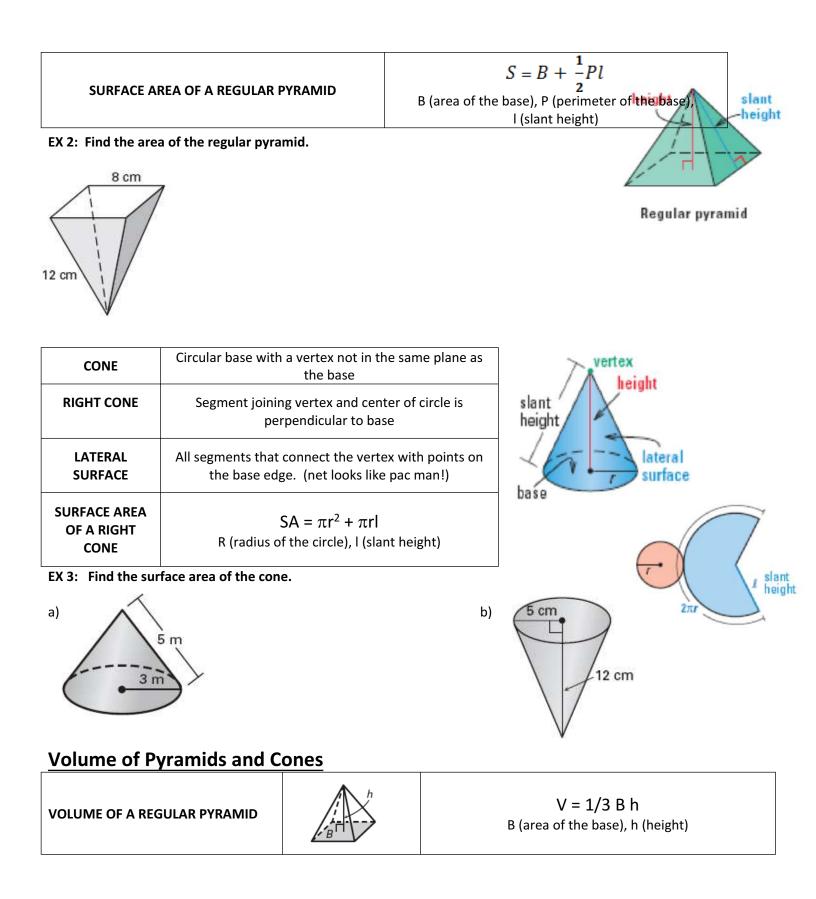


ft.

13 ft

b)

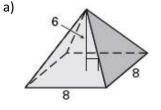

d)


c)

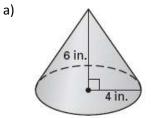
Surface Area of Pyramids and Cones

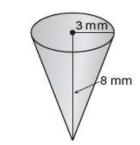
PYRAMID	a polyhedron in which the base is a polygon and the lateral faces are triangles with a common vertex (called the vertex of the pyramid)	
REGULAR PYRAMID	has a regular polygon for a base, and the segment joining the vertex and the center of the base is perpendicular to the base	

2



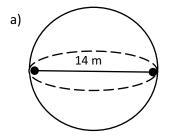
VOLUME OF A RIGHT CONE




 $V = 1/3 \pi r^2 h$ r (radius of circle), h (height)

EX 1: Find the volume of each pyramid. (The bases are regular polygons.)

EX 2: Find the volume of each cone.



b)

Surface Area and Volume of Spheres

SPHERE	Set of all points in space equidistant from a given point	
Other Vocabulary to recall: Center Radius Chord Diameter	center chord chord diameter	
SURFACE AREA OF A SPHERE	$SA = 4 \pi r^2$ r (radius)	

EX 1: Find the surface area of each of the following

b) A rubber ball that has a circumference of 13π cm.

VOLUME OF A SPHERE	V = 4/3 π r ³ r (radius)			
EX 2: Find the volume of the sphere. Leave your answers in terms of π .				
a)	b)			