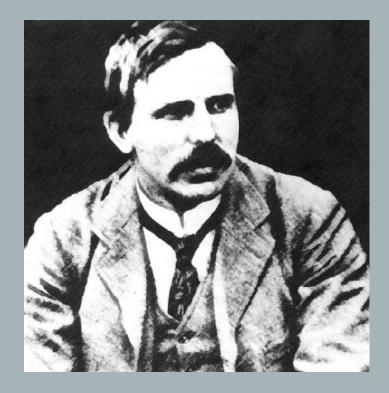

# Chapter 11 Modern Atomic Theory

This chapter helps us understand why chemicals do the things they do!



# Chapter 11 Modern Atomic Theory



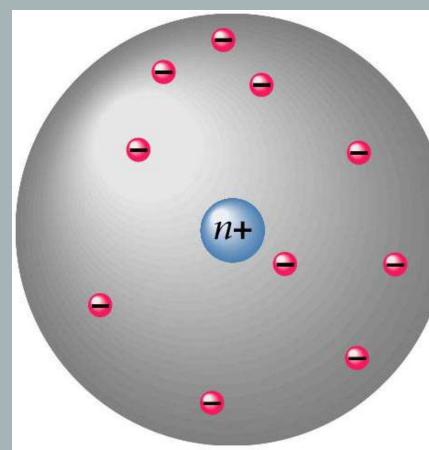



- What is the structure of an atom?
- A how are elements grouped (columns) on the Periodic Table?
- It has everything to do with electrons and how they are arranged



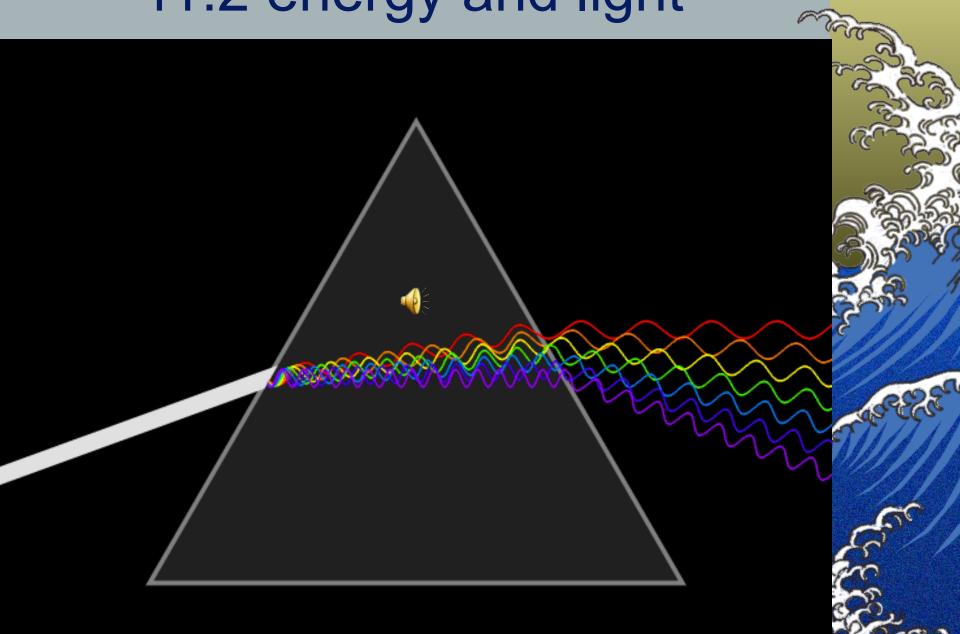
## 11.1 rutherford's atom




Remember: Rutherford and his buddies (in Ch 3) found that the atom had a nucleus with electrons on the outside

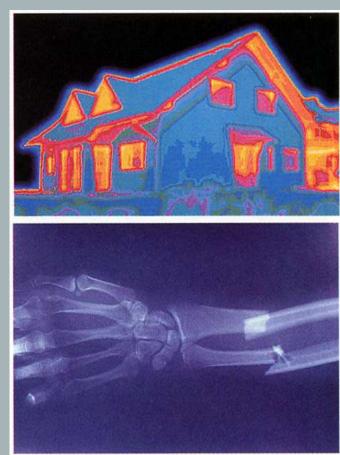
The nucleus was very small and was made of protons and neutrons

The e- made up the rest of the atom...



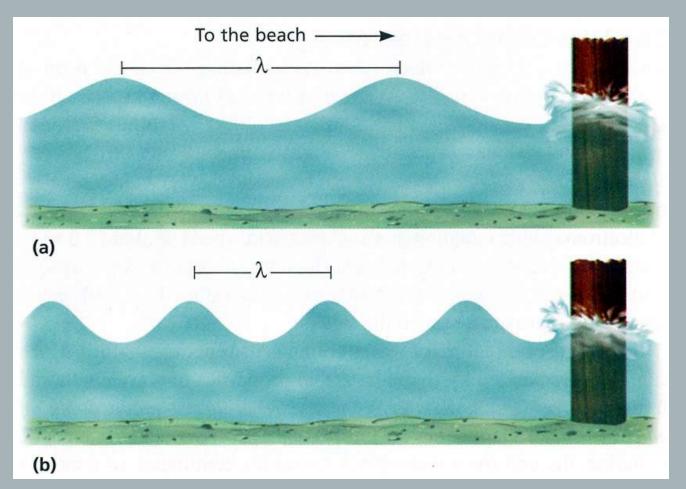

- But what were the e- doing? How were they arranged? Why didn't they just crash into the nucleus?
- Something more was needed!!!
   We need enlightenment!






## 11.2 energy and light




# 11.2 energy and light

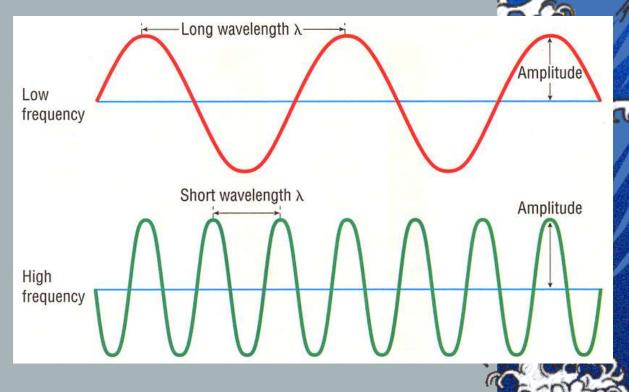
- When Energy is transmitted from one place to another by light we call it
   Electromagnetic radiation
- There are several types of electromagnetic radiation: light bulbs, fire places, the sun, X-rays, microwave ovens, you!
- what's the difference between them?



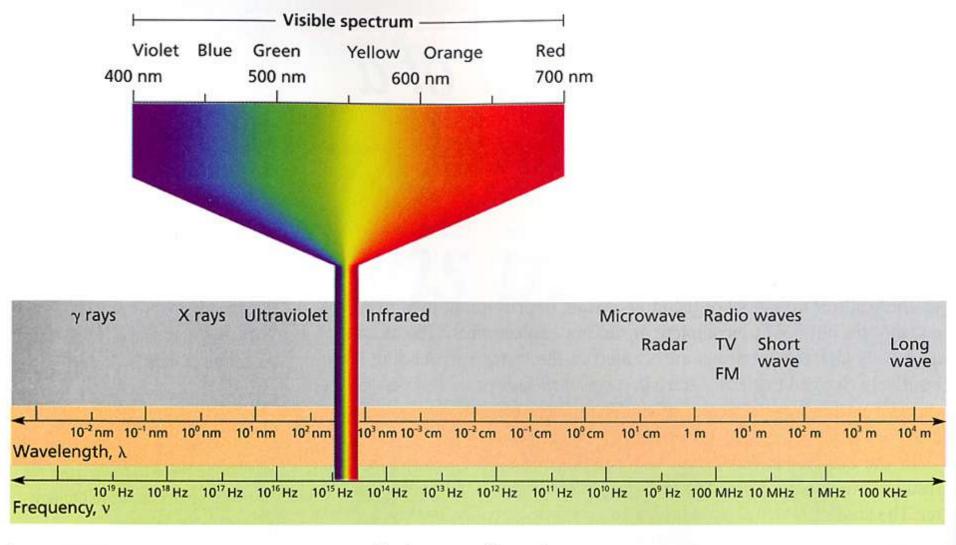


 It has to do with waves and their properties
 Waves have three main characteristics: Wavelength, Frequency, & Speed...






Wavelength: (λ) is the length of one full wave cycle

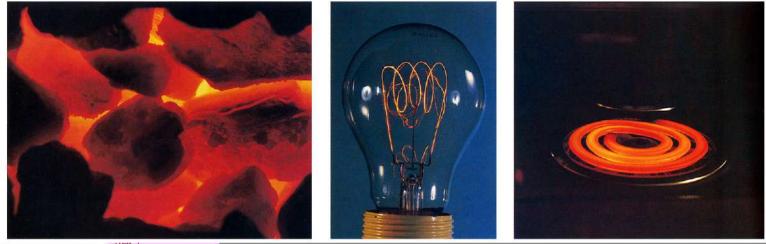

Frequency: (v) is how many waves pass a given point per given time

Speed: how fast a wave travels

Light does a similar thing to water waves; it travels at light speed with λ and ν...

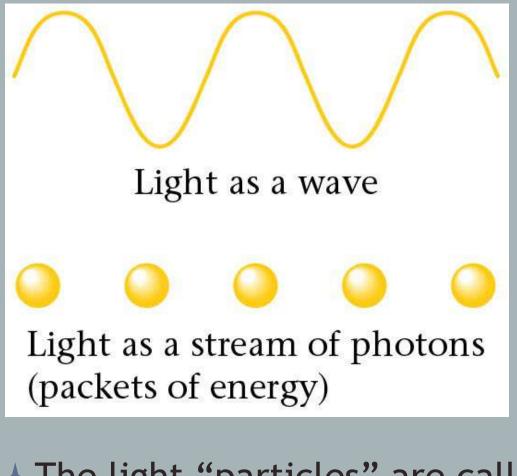


### ▲ What is a wave?




- Electromagnetic spectrum

### The ELECTROMAGNETIC SPECTRUM!! Which of the above transfer energy?




The EM radiation mentioned earlier all have their λ and ν, and all transfer Energy from one place to another - even through space!



A wave consists of discrete packets of energy, or quanta





The light "particles" are called photons
 So is it a *wave* or a *particle*?
 Both: wave-particle nature of light



- Different wavelengths carry different amounts of energy, blue more than yellow more than red...
- X-rays more than uv, visible more than IR, IR more than radio, etc.

# 11.3 Emission of energy by atoms



▲ Why the different colors here?



# Flame Tests

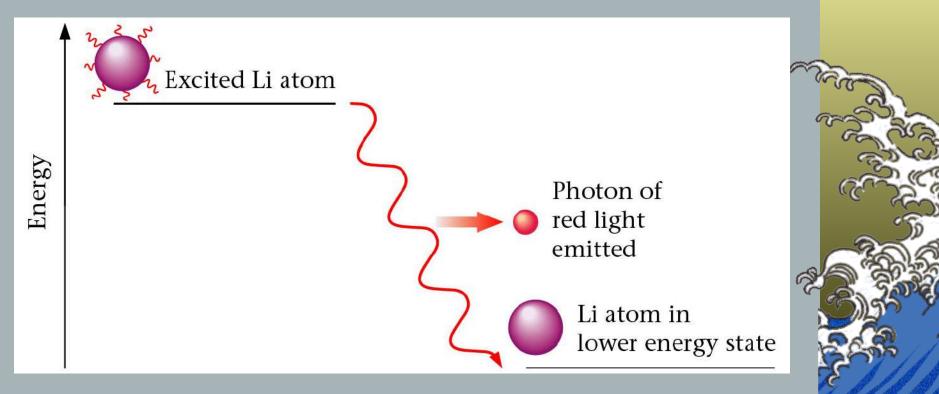











Sodium light

Mercury light

Nitrogen light

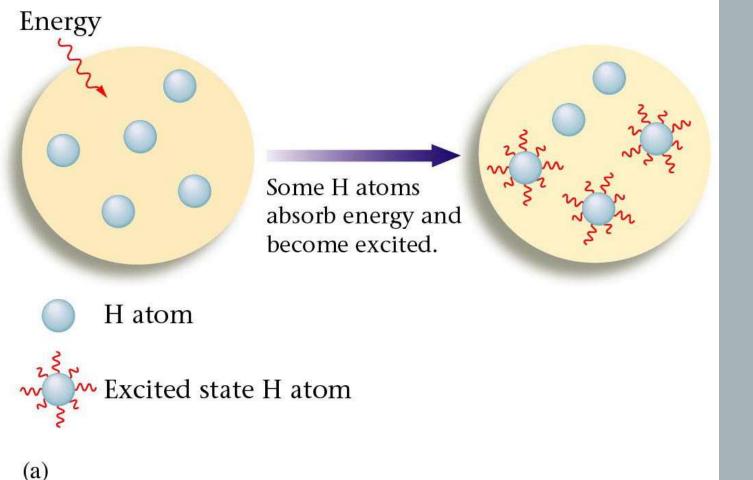
- *they only light up when they receive energy* (e.g. flame or electricity); but why?
   *Absorb* the energy
- A when they release that same amount of energy, they give off in the form of light



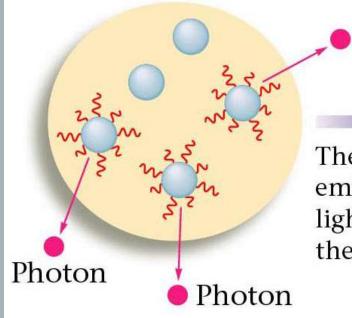


Li is gives off reddish light
 Cu would give off green
 sodium yellow

✓ why?

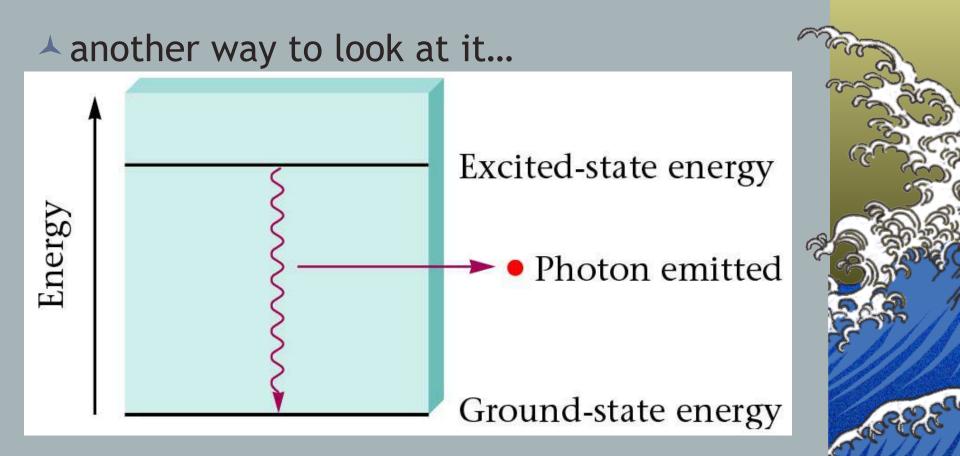

It has to do with how much energy an atom can absorb and then release

# 11.4 the energy levels of hydrogen

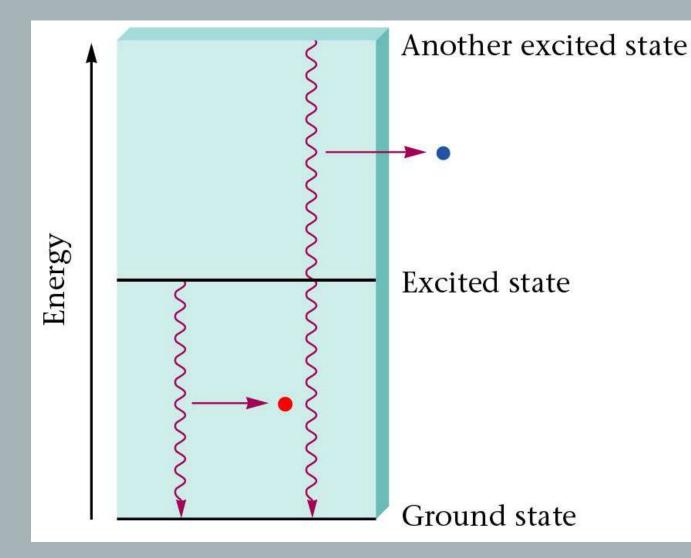

- An atom with excess energy is said to be excited
- When it emits the photon it goes back to unexcited state called ground state



Now we look specifically at hydrogen, but remember: different wavelengths carry different amounts of Energy per photon






Photon

The excited atoms emit photons of light and return to the ground state.

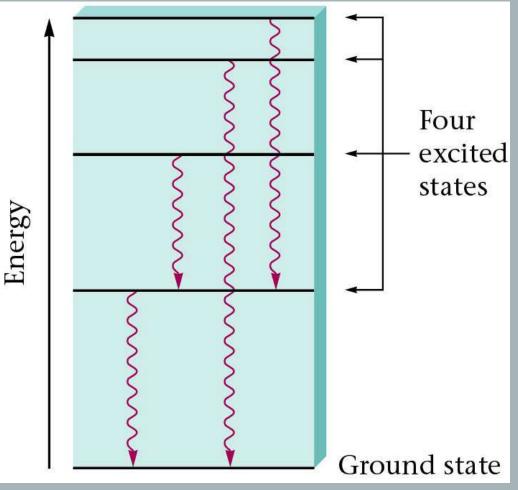


▲ Important point! The Energy contained in the photon corresponds exactly to the ∆E that the atom experiences



A notice that the color of the photon is related to how much nrg was given off

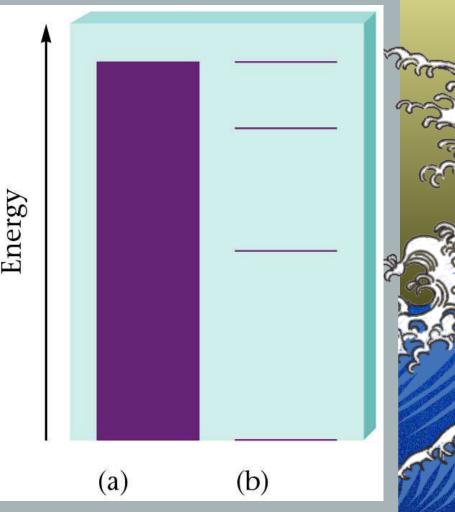



A when we put Energy into a hydrogen sample, and look at the light produced, specific wavelengths shine through



A there must be more than one energy level!



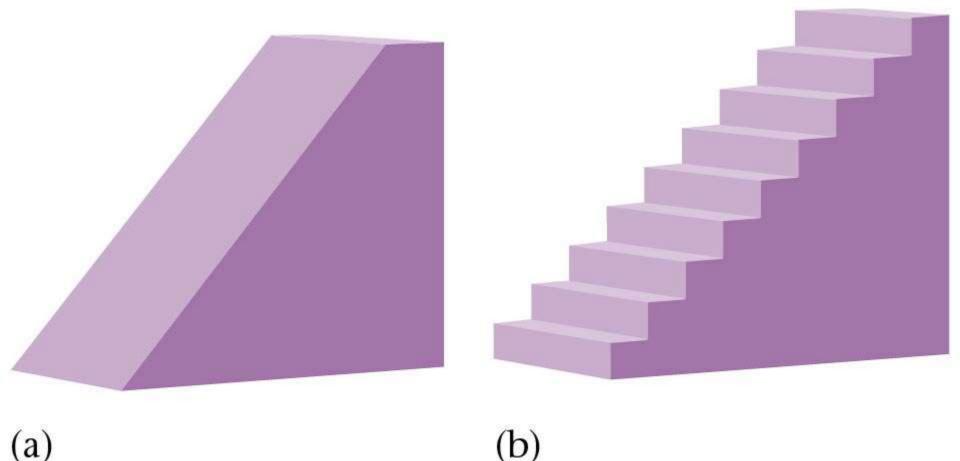

A Big picture for H? The different wavelengths mean there must be several ways for the e- to get back to ground state!





That hydrogen has only certain allowed ways for the electron to return to ground means the energy levels are not continuous (a)

The energy levels are distinct steps, they are: quantized (b)






# quantum (plural: quanta)

- It is the fundamental notion that a physical property may be "quantized", or "quantization".
- This means that the magnitude can take on only certain discrete numerical values, rather than any value, at least within a range.



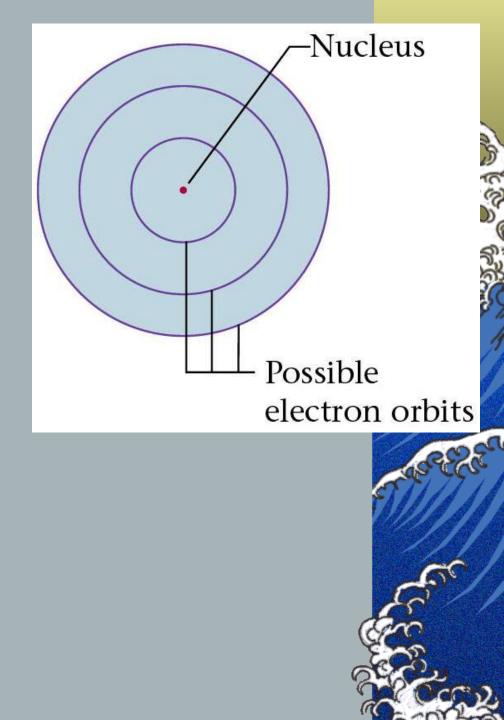


### A One can "exist" anywhere on the ramp


There are discrete locations (steps) that can be occupied on the stairs, one cannot stand between steps

### http://ioannis.virtualcomposer2000.com/s pectroscope/amici.html#colorphotos




# 11.5 the bohr model of the atom

depicts the atom as a small, positively charged nucleus surrounded by electrons that travel in circular orbits around the nucleus-similar in structure to the solar system, but with electrostatic forces providing attraction, rather than gravity.

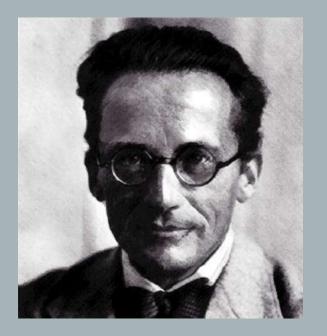




- The e only orbit the nucleus in certain orbits
- When the e- gained energy it went up to a higher level
- When it gave off its energy it fell back down, giving off a photon in the process
- A this actually worked well for hydrogen, but...



### It didn't work for any other atom


- In fact, it turns out e- don't move around the atom like planets, either
- Despite the fact that it seemed nice and elegant, a better model for the atom was needed...



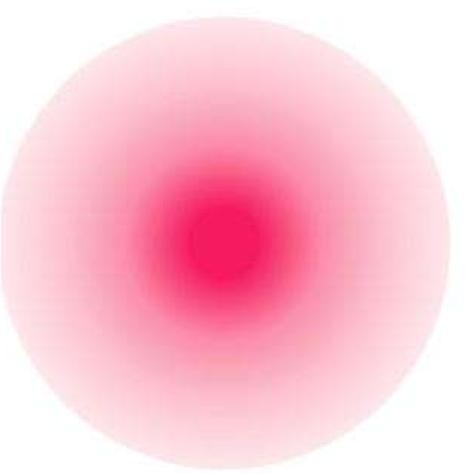
# 11.6 the wave mechanical model of the atom

- We needed a radical new approach to looking at the atom
- A By the mid-1920's that would happen...





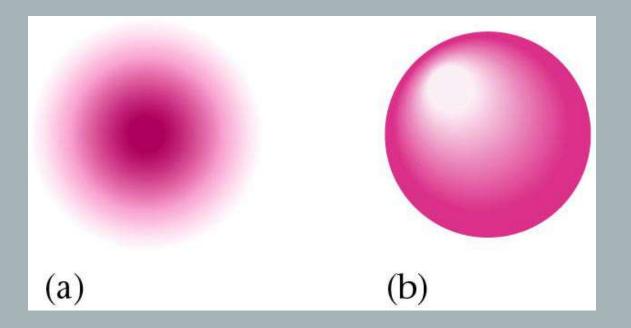
Schrödinger said maybe we should look at the electron not as a particle but as a wave!


 Schrödinger even developed an equation to describe what the wave-electron was doing

Called wave mechanical model of the atom...



- ▲ According to the wavemechanical model, the hydrogen electron's lowest energy can be pictured like this →
- Schrödinger found that he could not tell exactly where the e- was or where it was going, only where it probably is
- Those areas of probability are called: <u>orbitals</u>








# 11.7 the hydrogen orbitals

 The fuzzy drawing we see here just represents where the electron probably is
 It's easier to draw it as a sphere, which represents the volume in space where there is a 90% chance of finding it







 This orbital has a name: 1s
 It is hydrogen's lowest energy state
 What happens when the egoes into an excited state?
 first...



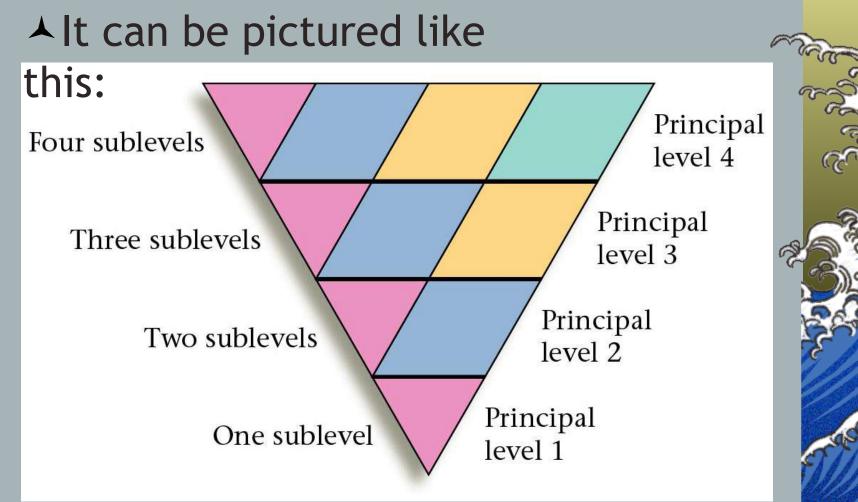
### The S Orbital



## Hydrogen energy levels

- A Remember that the H atom has discrete E levels? They have a name...
- + = principal energy levels
- $\checkmark$  Labeled by integers from n = 1  $\rightarrow \infty$
- Each level has sublevels, like rooms on a floor





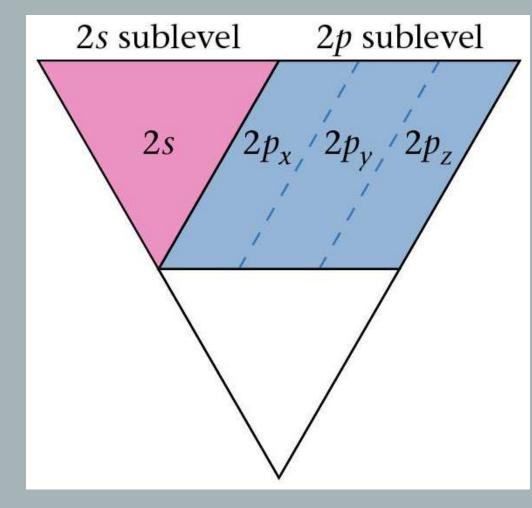

see a pattern?

#### ▲It can be pictured like this: Principal Four sublevels level 4 Principal Three sublevels level 3 Principal Two sublevels level 2 Principal One sublevel level 1

The lowest level (ground state) contains just one orbital; the 1s






1 stands for the 1st principal quantum level



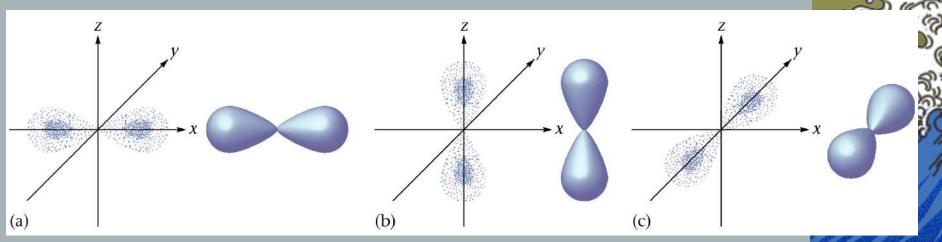
#### ▲It can be pictured like this: Principal Four sublevels level 4 Principal Three sublevels level 3 Principal Two sublevels level 2 Principal One sublevel level 1

**s** is the abbreviation for the *sublevel* that is there and tells us its *shape* (spherical)

#### The *second* level has 2s *and* 2p sublevels






### the 2s is just like the 1s, but **bigger**



#### but the 2p's are entirely different...

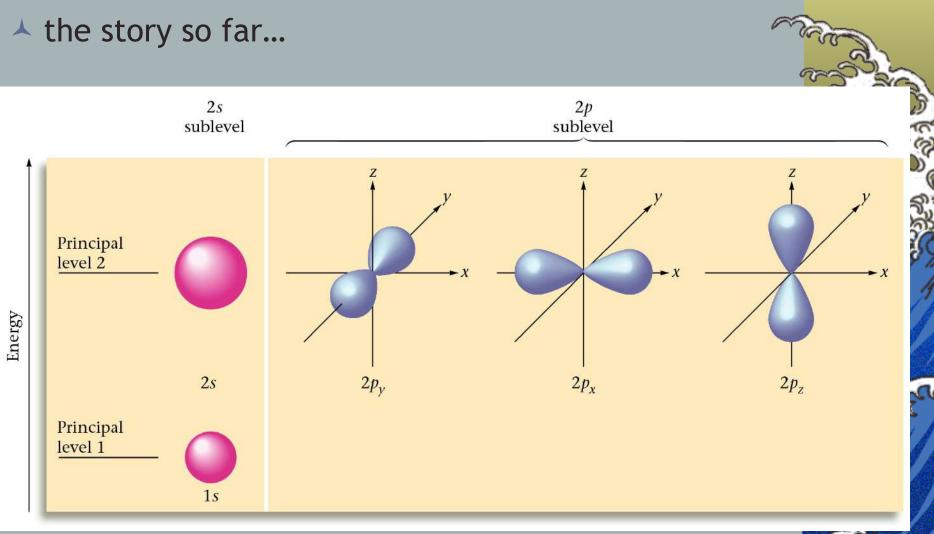


# There are three of them and they are dumbbell shaped (lobed)



- The x, y, and z tells us which axis they are lined up on
- (note: these are single orbitals with double lobes)

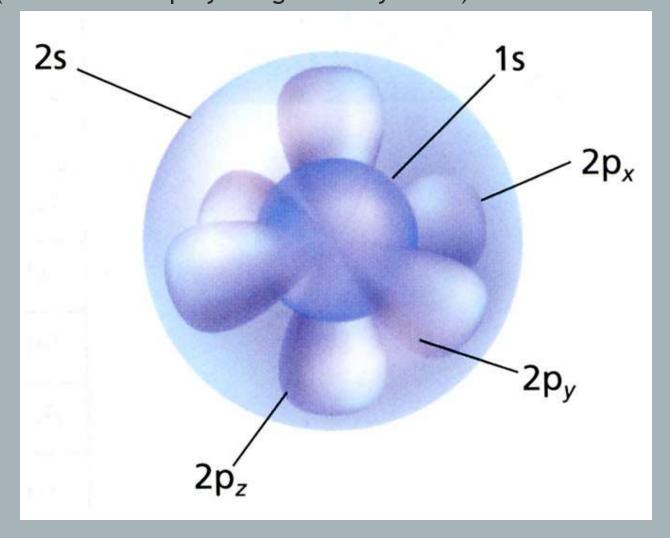



## The three 2p Orbitals

The 2p<sub>x</sub> orbital

The 2py orbital

#### The 2p<sub>z</sub> orbital






Each can hold two electrons



#### ▲ If overlapped they look like this (this view will play a big role beyond H)







#### ▲ 1S, 2S and sP Orbital animation

#### A the summary so far:

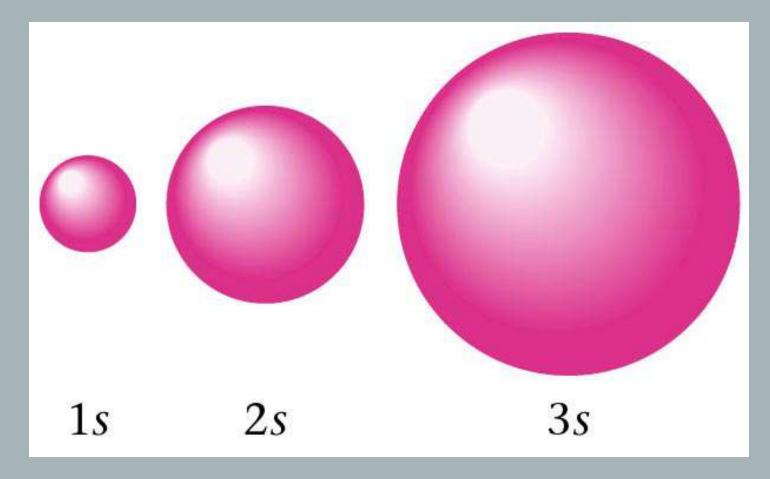
#### **Orbital Labels**

- 1. The number tells the principal energy level.
- 2. The letter tells the shape. The letter *s* means a spherical orbital; the letter *p* means a two-lobed orbital. The *x*, *y*, or *z* subscript on a *p* orbital label tells along which of the coordinate axes the two lobes lie.



Important to note that as *level number* goes up so does average distance from nucleus

So if H has only one e- why does it have so many orbitals?...

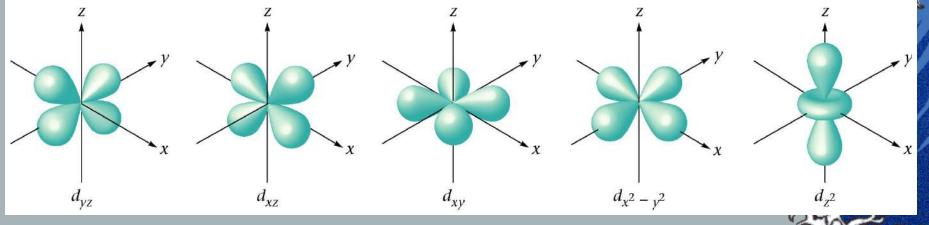



Hydrogen orbitals

- The extra orbitals are just potential orbitals for an excited e-
- A The e- can only occupy one space at a time!



#### At level 3 there are s and p orbitals just like the previous levels - only bigger






#### There is room for even more orbitals out there

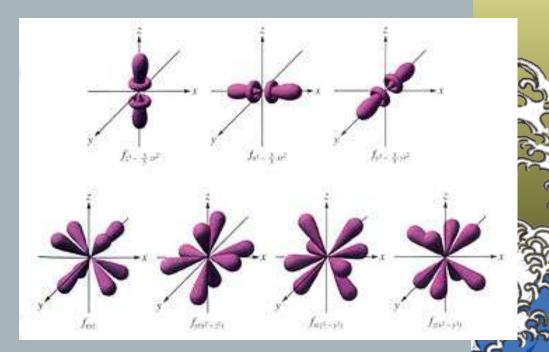


#### A there are d orbitals!



CCC2

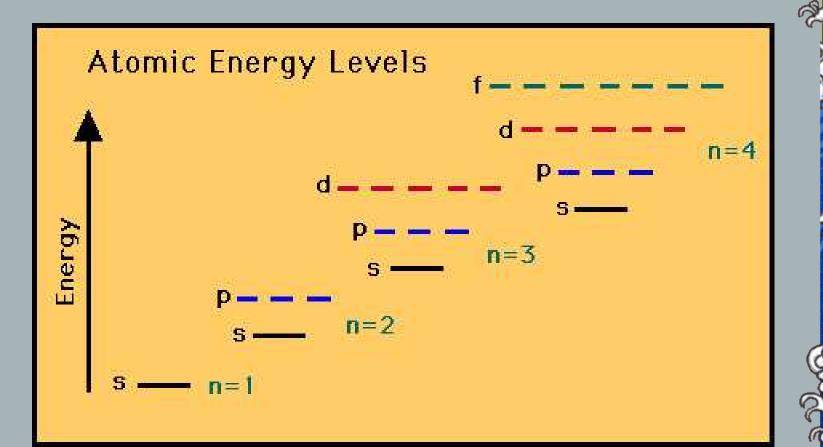
The shapes and labels of the five 3d orbitals The 3d<sub>xz</sub> orbital The 3d


The 3dyz orbital

The 3d<sub>xy</sub> orbital

The  $3d_z^2$  orbital The  $3d_x^2z^2$  orbital




At the 4th level there are f orbitals and so on



You are responsible for knowing up to the 4th level and only the shapes of s, p, and d orbitals (s and p in detail)

## **11.9** Electron Arrangements

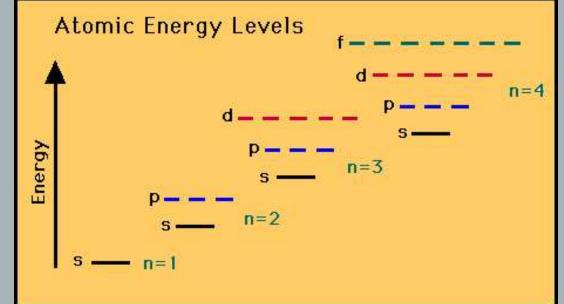
# Electron configurations and electron diagrams Using the Aufbau Principle Electrons fill energy levels starting with the lowest



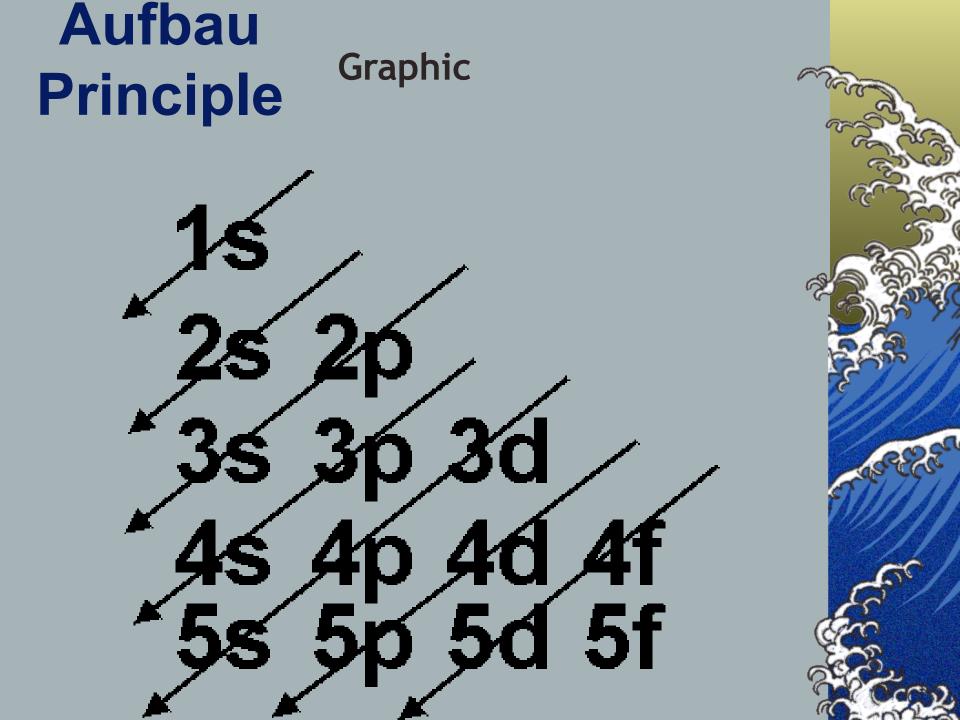
#### Writing electron configurations

▲ Hydrogen

Number of electrons f in the orbital  $r \rightarrow 1s^1$ Value of  $n \uparrow -$ (principal (principal orbital) energy level) orbital


What would the electron configuration of He be?

After that, the electrons go into principal energy level 2




#### **Electron configuration**

- ▲ As larger atoms are configured, the electrons should be assigned to increasing energy levels, according to the Aufbau Principle
- 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>10</sup> 5p<sup>6</sup> 6s<sup>2</sup> 4f<sup>14</sup> 5d<sup>10</sup> 6p<sup>6</sup> 7s<sup>2</sup> 5f<sup>14</sup> 6d<sup>10</sup> etc...







# **Questions?**



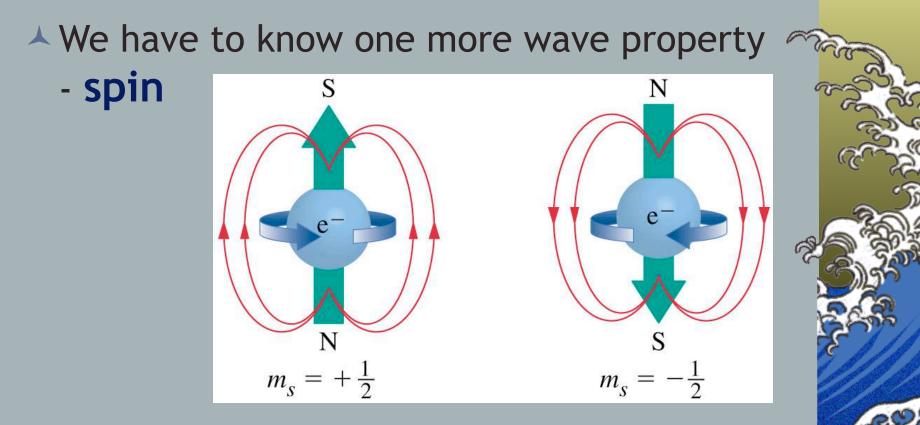
# Write Electron Configurations for the following

- ▲ Boron
- 🔺 Nitrogen
- Neon
- Sodium
- A Phosphorus
- Argon



# Write Electron Configurations for the following

- ▲ Boron
- 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>
- 🔺 Nitrogen
- 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>
- Neon
- 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>
- ▲ Sodium
- 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup>
- A Phosphorus
- 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>3</sup>
- 🔺 Argon
- $1s^2 2s^2 2p^6 3s^2 3p^6$




## **11.9 Electron Arrangements**

Electron diagrams

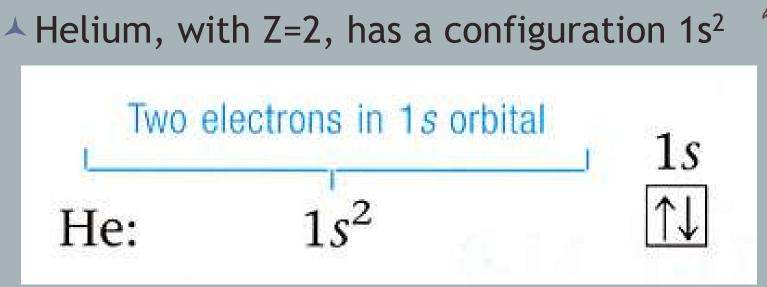
Using the Aufbau Principle





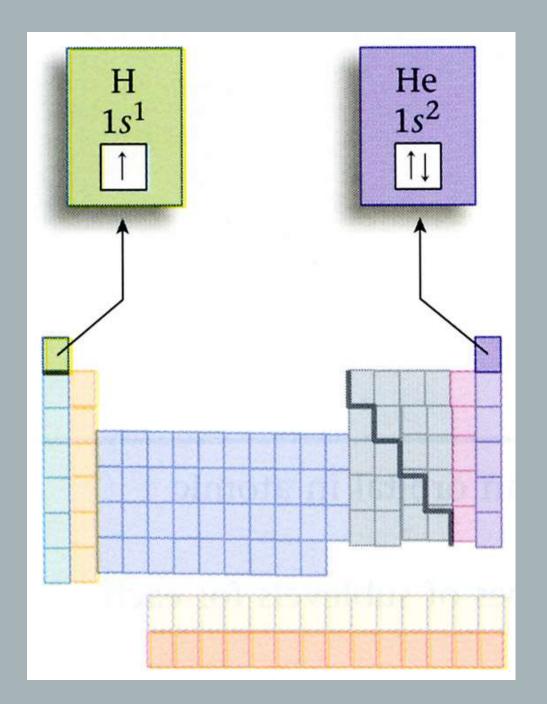
- Little spinning charged things (like e-) have a magnetic field
- Their orientation and proximity must be paired up properly

▲ for two e- to occupy the same orbital they must spin *in opposite directions* 


A this is the Pauli exclusion principle



#### Atoms can also be represented in an orbital diagram (aka box diagram) where the arrow represents the electron








#### A notice the arrows are opposing, representing opposite spins

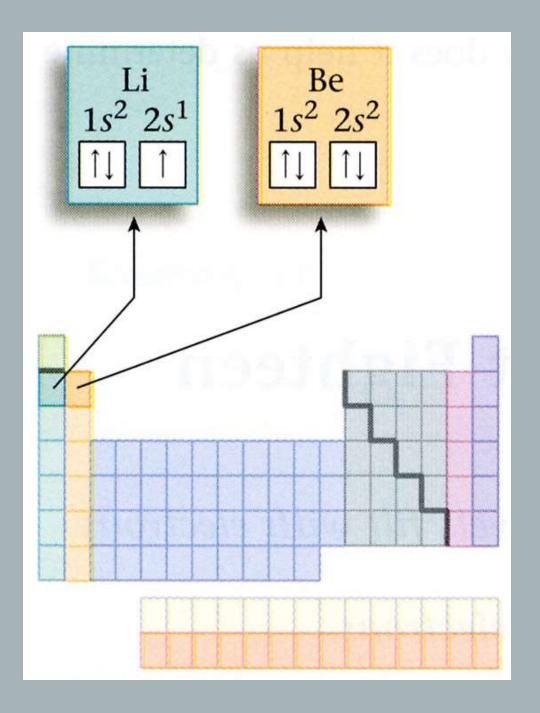






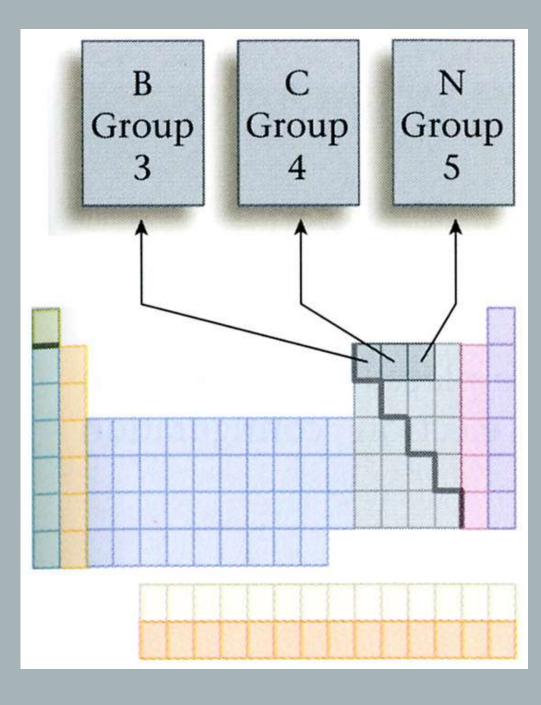
- Iithium (Z=3) finds the 1s filled and so throws its third into the next lowest energy orbital
- that is the 2s!
- A when we regard the "polyelectronic" atoms the 2s orbital is lower in E than the 2p

15 2s $1s^2 2s^1$ Li:




# A beryllium's 4th e- goes into the empty space of the 2s, but opposite

A the 2s must be filled before going to next level


1s2s $1s^2 2s^2$ Be:







### now B, C, and N...





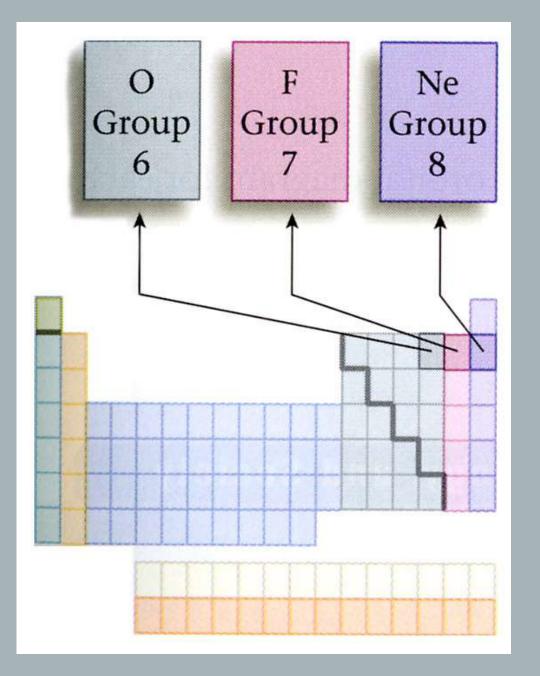
A B's 5th electron goes into any of the 2p's (since they are all the same E, it doesn't matter which)

B: 
$$1s^2 2s^2 2p^1$$
  $1s 2s 2p$ 



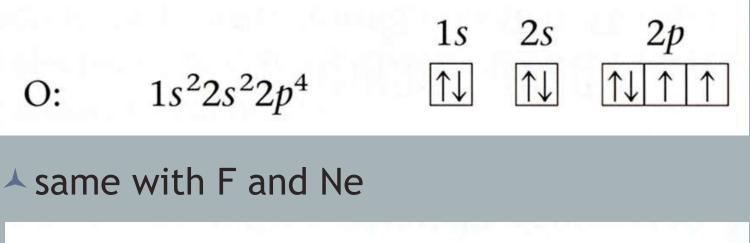
- when C adds its 6th, it has to occupy an empty one (remember, they aren't attracted each other)
- A it doesn't matter which of the two, but they must be different from the first!




(minor point: make sure they spin the same way **until** they are in same orbital)






### A nitrogen's 7th will go in the last unoccupied, keeping them all separate but with same spin

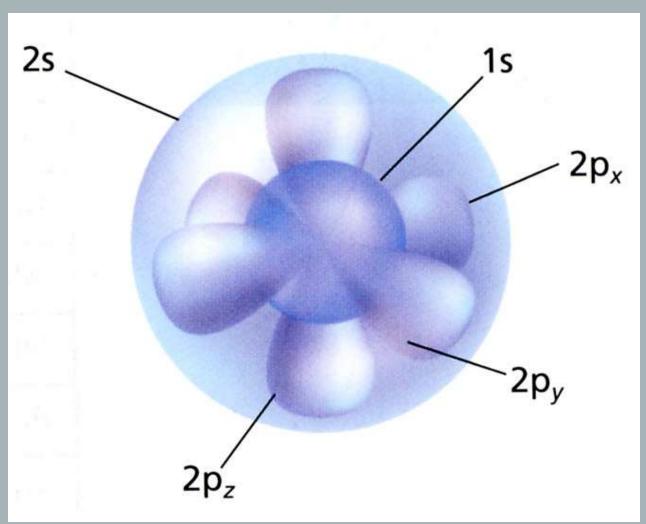






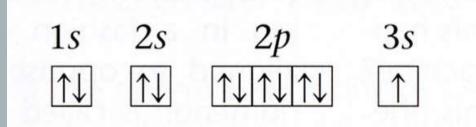
A oxygen's 8th can buddy up with any of the others, but it must spin opposite!




Is2s2pF: $1s^22s^22p^5$  $\uparrow\downarrow$  $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$ Ne: $1s^22s^22p^6$  $\uparrow\downarrow$  $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow$ 



### ▲ the story so far:


|           |                  | nfigurations and Orbi<br>ments in the First Two                                 |                                                 |  |  |  |  |  |
|-----------|------------------|---------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Element   | Atomic<br>number | Orbital diagram<br>1s 2s 2p <sub>x</sub> 2p <sub>y</sub> 2p <sub>z</sub>        | Electron<br>configuration notation              |  |  |  |  |  |
| Hydrogen  | 1                |                                                                                 | 1s <sup>1</sup>                                 |  |  |  |  |  |
| Helium    | 2                | $\uparrow\downarrow$                                                            | 1s <sup>2</sup>                                 |  |  |  |  |  |
| Lithium   | 3                | $\uparrow\downarrow\uparrow$                                                    | 1s <sup>2</sup> 2s <sup>1</sup>                 |  |  |  |  |  |
| Beryllium | 4                | $\uparrow\downarrow \uparrow\downarrow$                                         | 1s <sup>2</sup> 2s <sup>2</sup>                 |  |  |  |  |  |
| Boron     | 5                | $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$                        | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>1</sup> |  |  |  |  |  |
| Carbon    | 6                | $\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow$                     | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>2</sup> |  |  |  |  |  |
| Nitrogen  | 7                | $\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$   | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>3</sup> |  |  |  |  |  |
| Oxygen    | 8                | $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow$ | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>4</sup> |  |  |  |  |  |
| Fluorine  | 9                |                                                                                 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>5</sup> |  |  |  |  |  |
| Neon      | 10               |                                                                                 | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> |  |  |  |  |  |

A these are the orbitals, all put together as before - just now they are all filled





- A next comes Na!
- we've filled up the first and second level; now what?!
- ▲ go to the next level! the 3s



- but now a shortcut for the econfiguration
- instead of writing 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>1</sup> we abbreviate the inner-level electrons with [Ne], so Na becomes [Ne]3s<sup>1</sup>



For the following elements, write the electron configuration, shortcut and the electron diagram.

- 🔺 oxygen
- ▲ boron
- 🔺 chlorine
- ▲ iron
- 🔺 aluminum
- 🔺 nitrogen
- 🔺 sulfur
- ▲ silicon
- 🔺 krypton
- 🔺 titanium
- 🔺 magnesium
- A phosphorus
- 🔺 neon
- ▲ copper
- ▲ barium



# Mg (Z=12) is 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup> or [Ne]3s<sup>2</sup> Al (Z=13) is 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>1</sup> or [Ne]3s<sup>2</sup>3p<sup>1</sup> and so on...

| Electr     | on Config        | urations for Elemen                                             | ts in Period Three                                 |  |  |  |  |  |
|------------|------------------|-----------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Element    | Atomic<br>number | Complete electron<br>configuration                              | Electron configuration<br>using noble-gas notation |  |  |  |  |  |
| Sodium     | 11               | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>1</sup> | [Ne]3s <sup>1</sup>                                |  |  |  |  |  |
| Magnesium  | 12               | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> | [Ne]3s <sup>2</sup>                                |  |  |  |  |  |
| Aluminum   | 13               | <mark>1s²2s²2p</mark> 63s²3p1                                   | [Ne]3s <sup>2</sup> 3p <sup>1</sup>                |  |  |  |  |  |
| Silicon    | 14               | <mark>1s²2s²2p</mark> 63s²3p²                                   | [Ne]3s <sup>2</sup> 3p <sup>2</sup>                |  |  |  |  |  |
| Phosphorus | 15               | <mark>1s²2s²2p6</mark> 3s²3p³                                   | [Ne]3s <sup>2</sup> 3p <sup>3</sup>                |  |  |  |  |  |
| Sulfur     | 16               | <mark>1s²2s²2p</mark> 63s²3p4                                   | [Ne]3s <sup>2</sup> 3p <sup>4</sup>                |  |  |  |  |  |
| Chlorine   | 17               | <mark>1s²2s²2p</mark> 63s²3p <sup>5</sup>                       | [Ne]3s <sup>2</sup> 3p <sup>5</sup>                |  |  |  |  |  |
| Argon      | 18               | <mark>1s²2s²2p</mark> 63s²3p6                                   | [Ne]3s <sup>2</sup> 3p <sup>6</sup> or [Ar]        |  |  |  |  |  |



# Valence electrons are those on the outermost principal energy level; the core electrons are the ones inside the outermost (yellow)

| Electr      | on Config        | urations for Elemen                                             | ts in Period Three                                 |  |  |  |  |  |
|-------------|------------------|-----------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Element     | Atomic<br>number | Complete electron<br>configuration                              | Electron configuration<br>using noble-gas notation |  |  |  |  |  |
| Sodium      | 11               | <mark>1s²2s²2p</mark> <sup>6</sup> 3s¹                          | [Ne]3s <sup>1</sup>                                |  |  |  |  |  |
| Magnesium   | 12               | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> | [Ne]3s <sup>2</sup>                                |  |  |  |  |  |
| Aluminum    | 13               | <mark>1s²2s²2p</mark> 63s²3p1                                   | [Ne]3s <sup>2</sup> 3p <sup>1</sup>                |  |  |  |  |  |
| Silicon     | 14               | <mark>1s²2s²2p</mark> 63s²3p²                                   | [Ne]3s <sup>2</sup> 3p <sup>2</sup>                |  |  |  |  |  |
| Phosphorus  | 15               | <mark>1s²2s²2p</mark> 63s²3p³                                   | [Ne]3s <sup>2</sup> 3p <sup>3</sup>                |  |  |  |  |  |
| Sulfur      | 16               | <mark>1s²2s²2p</mark> 63s²3p4                                   | [Ne]3s <sup>2</sup> 3p <sup>4</sup>                |  |  |  |  |  |
| Chlorine 17 |                  | <mark>1s²2s²2p</mark> 63s²3p <sup>5</sup>                       | [Ne]3s <sup>2</sup> 3p <sup>5</sup>                |  |  |  |  |  |
| Argon       | 18               | <mark>1s²2s²2p</mark> 63s²3p6                                   | [Ne]3s <sup>2</sup> 3p <sup>6</sup> or [Ar]        |  |  |  |  |  |



### A here's a summary of the outer orbitals; see a pattern?

| Н<br>1 <i>s</i> <sup>1</sup> |                               |                                         |             |                       | rerit<br>Stoten<br>n, ble | raji<br>19.761<br>ji oles |                       | He<br>1 <i>s</i> <sup>2</sup> |
|------------------------------|-------------------------------|-----------------------------------------|-------------|-----------------------|---------------------------|---------------------------|-----------------------|-------------------------------|
| Li<br>2s <sup>1</sup>        | Be $2s^2$                     |                                         | $B \\ 2p^1$ | С<br>2p <sup>2</sup>  | N<br>2p <sup>3</sup>      | О<br>2p <sup>4</sup>      | F<br>2p <sup>5</sup>  | Ne<br>2 <i>p</i> <sup>6</sup> |
| Na<br>3s <sup>1</sup>        | Mg<br>3 <i>s</i> <sup>2</sup> | ed hit certs<br>Sauce 10<br>Of requires | Al $3p^1$   | Si<br>3p <sup>2</sup> | Р<br>3р <sup>3</sup>      | S<br>3p <sup>4</sup>      | Cl<br>3p <sup>5</sup> | Ar<br>3 <i>p</i> <sup>6</sup> |

A next we tackle the other elements...



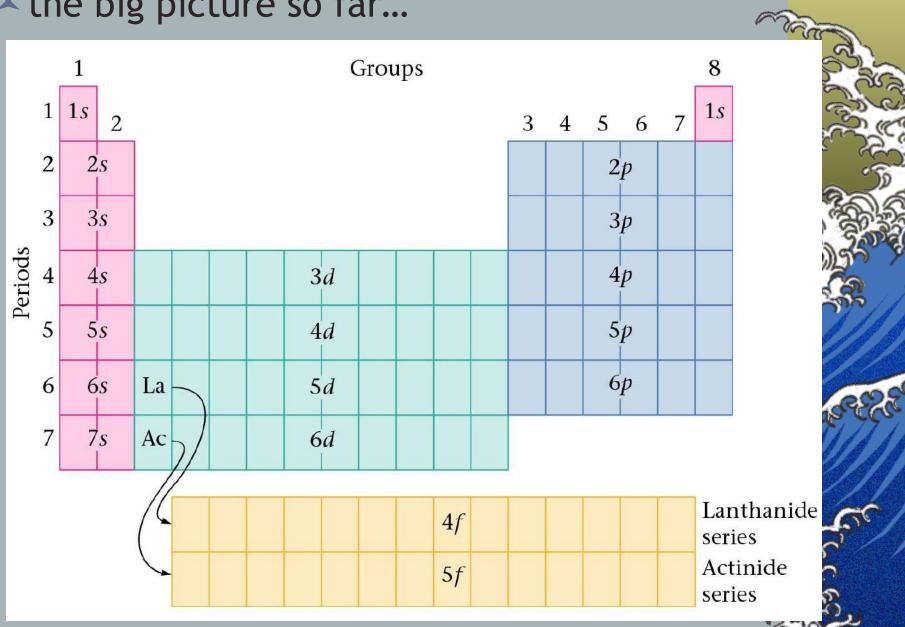
# 11.10 Electron Configurations & the Periodic Table

- A the first 18 seem OK; they fill normally
- A but when we get to K, things start getting a little weirder
- ▲ K's 19th electron should go to 3d, right?
- but K behaves a lot like Li and Na, both of which have an s<sup>1</sup> as their last e-
- what to do???!



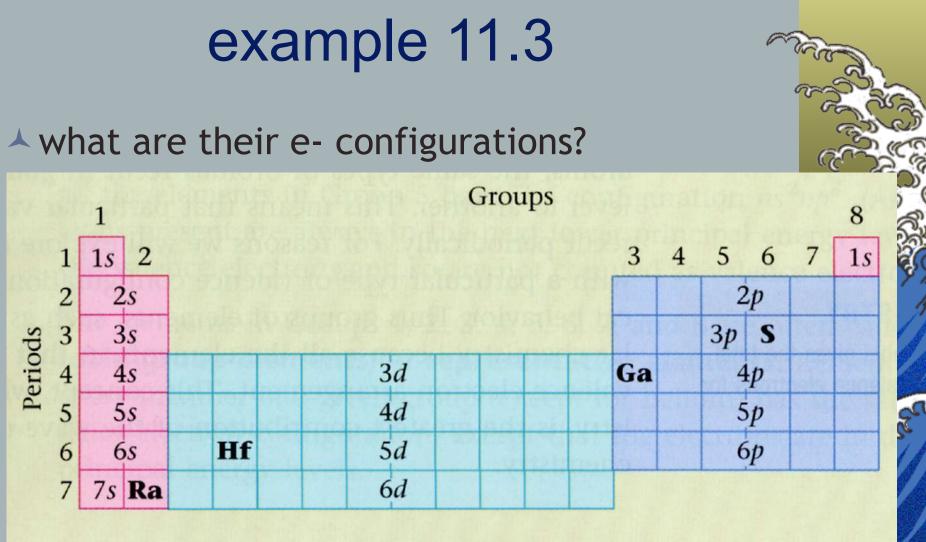
- we follow the lead nature gives us and say: K's 19th will go in the 4s, not the 3d, so...
- K is 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup> or [Ar]4s<sup>1</sup>
- A experiments show this is right
- And Ca will be: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>2</sup> or [Ar]4s<sup>2</sup>
- now the 4s is full!!!
- so, b/c where the electrons go is where there is lower E, we conclude 4s must be lower in E than 3d
- A then where next?




### **NOW** it appears the 3d's get filled, then ' the 4p's like this

| К<br>4 <i>s</i> <sup>1</sup> | Ca<br>4s <sup>2</sup> | Sc $3d^1$ | Ti<br>3d² | V<br>3d <sup>3</sup> | Cr<br>4 <i>s</i> <sup>1</sup> 3 <i>d</i> <sup>5</sup> | Mn<br>3 <i>d</i> <sup>5</sup> | Fe<br>3d <sup>6</sup> | Co<br>3d <sup>7</sup> | Ni<br>3d <sup>8</sup> | Cu $4s^13d^{10}$ | Zn<br>3 <i>d</i> 10 | Ga $4p^1$ | Ge<br>4 <i>p</i> <sup>2</sup> | As $4p^3$ | Se<br>4 <i>p</i> <sup>4</sup> | Br<br>4 <i>p</i> <sup>5</sup> | Kr<br>4 <i>p</i> <sup>6</sup> |
|------------------------------|-----------------------|-----------|-----------|----------------------|-------------------------------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|------------------|---------------------|-----------|-------------------------------|-----------|-------------------------------|-------------------------------|-------------------------------|

[remember those 3d critters are called transition metals]


[and, don't be too concerned right now about why Cr and Cu break the rules]

### ▲ the big picture so far...



- here is how they fill using a box diagram
   you can use this or the PT to figure out just about any e-conf on the whole Table
- [sometime you'll travel through the lanthanide (4f) and actinide (5f) series, but I won't ask for any in there





▲ and now, the Really Big Picture...



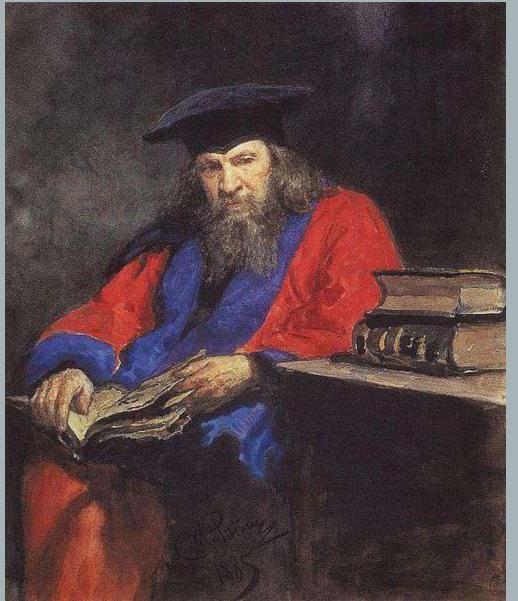
|                                                                 |                           | entative<br>nents            | 2                                           |                                             |                                                             | <i>d-</i> Tr                                 | ansitio                                                | n Elem                                               | ents                                                        |                                                             |                                                             |                                                              | R                                             | epresei                                             | ntative                                                     | Elemer                                                      | its                                                | Noble<br>Gases                                                |       |
|-----------------------------------------------------------------|---------------------------|------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|-------|
|                                                                 | 1A<br>181                 | Group<br>numbers             |                                             |                                             |                                                             |                                              |                                                        |                                                      |                                                             |                                                             |                                                             |                                                              |                                               |                                                     |                                                             |                                                             |                                                    | 8A<br>ns <sup>2</sup> np <sup>6</sup>                         |       |
| 1                                                               | 1<br>H<br>1s <sup>1</sup> | 2A<br>ns <sup>2</sup>        |                                             |                                             |                                                             |                                              |                                                        |                                                      |                                                             |                                                             |                                                             |                                                              | 3A<br>ns <sup>2</sup> np <sup>1</sup>         | 4A<br>ns <sup>2</sup> np <sup>2</sup>               | 5A<br>ns <sup>2</sup> np <sup>3</sup>                       | 6A<br>ns <sup>2</sup> np <sup>4</sup>                       | 7A<br>ns <sup>2np5</sup>                           | 2<br>He<br>1s <sup>2</sup>                                    | Juc's |
| on level                                                        | 3<br>Li<br>2s1            | 4<br>Be<br>2s <sup>2</sup>   |                                             |                                             |                                                             |                                              |                                                        |                                                      |                                                             |                                                             |                                                             |                                                              | 5<br>B<br>2s <sup>2</sup> 2p <sup>1</sup>     | 6<br>C<br>2s <sup>2</sup> 2p <sup>2</sup>           | 7<br>N<br>2s <sup>2</sup> 2p <sup>3</sup>                   | 8<br>O<br>2 <i>s</i> <sup>2</sup> 2 <i>p</i> <sup>4</sup>   | 9<br>F<br>2s <sup>2</sup> 2p <sup>5</sup>          | 10<br>Ne<br>2 <i>s</i> <sup>2</sup> 2 <i>p</i> <sup>6</sup>   | y'y   |
| pied electi<br>∞                                                | 11<br>Na<br>351           | 12<br>Mg<br>392              |                                             |                                             |                                                             |                                              |                                                        |                                                      |                                                             |                                                             |                                                             |                                                              | 13<br>Al<br>3s <sup>2</sup> 3p <sup>1</sup>   | 14<br>Si<br><sup>3s<sup>2</sup>3p<sup>2</sup></sup> | 15<br>P<br>3s <sup>2</sup> 3p <sup>3</sup>                  | 16<br>S<br>3s <sup>2</sup> 3p <sup>4</sup>                  | 17<br>Cl<br>3s <sup>2</sup> 3p <sup>5</sup>        | 18<br>Ar<br>3\$ <sup>2</sup> 3p <sup>6</sup>                  |       |
| Period number, highest occupied electron level<br>9 5 5 5 5 5 5 | 19<br>K<br>4s1            | 20<br>Ca<br>45 <sup>2</sup>  | 21<br>Sc<br>4s <sup>2</sup> 3d <sup>1</sup> | 22<br>Ti<br>4s <sup>23d2</sup>              | 23<br>V<br>4s <sup>2</sup> 3d <sup>3</sup>                  | 24<br>Cr<br>4s <sup>13d5</sup>               | 25<br>Mn<br>4s <sup>2</sup> 3d <sup>5</sup>            | 26<br>Fe<br>4s <sup>2</sup> 3d <sup>6</sup>          | 27<br>Co<br>4s <sup>2</sup> 3d <sup>7</sup>                 | 28<br>Ni<br>4s <sup>2</sup> 3d <sup>8</sup>                 | 29<br>Cu<br>4s <sup>13d10</sup>                             | 30<br>Zn<br>4s <sup>2</sup> 3d <sup>10</sup>                 | 31<br>Ga<br>4s <sup>24p1</sup>                | 32<br>Ge<br>4s <sup>2</sup> 4p <sup>2</sup>         | 33<br>As<br>4 <i>s</i> <sup>2</sup> 4 <i>p</i> <sup>3</sup> | 34<br>Se<br>4s <sup>2</sup> 4p <sup>4</sup>                 | 35<br>Br<br>4s <sup>24p5</sup>                     | 36<br>Kr<br>4s <sup>2</sup> 4p <sup>5</sup>                   | 33    |
| mber, hig<br>2                                                  | 37<br>Rb<br>5s1           | 38<br>Sr<br>5\$ <sup>2</sup> | 39<br>Y<br>5s <sup>24d1</sup>               | 40<br>Zr<br>5s <sup>2</sup> 4d <sup>2</sup> | 41<br>Nb<br>5s <sup>1</sup> 4d <sup>4</sup>                 | 42<br>Mo<br>5s14d5                           | 43<br>Tc<br>5s <sup>14d6</sup>                         | 44<br>Ru<br>5s <sup>14d7</sup>                       | 45<br>Rh<br><sup>5s14d8</sup>                               | 46<br>Pd<br>5s <sup>14d10</sup>                             | 47<br>Ag<br>5s <sup>1</sup> 4d <sup>10</sup>                | 48<br>Cd<br>5 <i>s</i> <sup>2</sup> 4 <i>d</i> <sup>10</sup> | 49<br>In<br>5s <sup>2</sup> 5p <sup>1</sup>   | 50<br>Sn<br>5s <sup>25p<sup>2</sup></sup>           | 51<br>Sb<br>5 <i>s</i> 25 <i>p</i> 3                        | 52<br>Te<br>5 <i>s</i> <sup>2</sup> 5 <i>p</i> <sup>4</sup> | 53<br>I<br>5s <sup>2</sup> 5p <sup>5</sup>         | 54<br>Xe<br>5 <i>s</i> 25 <i>p</i> 6                          | 39    |
| Period nu<br>o                                                  | 55<br>Cs<br>6s1           | 56<br>Ba<br>652              | 57<br>La*<br>6s25d1                         | 72<br>Hf<br>6s25d2                          | 73<br>Ta<br>6s25d3                                          | 74<br>W<br>6s25d4                            | 75<br>Re<br>6s25d5                                     | 76<br>Os<br>6s <sup>2</sup> 5d <sup>6</sup>          | 77<br>Ir<br>6 <i>s</i> 25d7                                 | 78<br>Pt<br>6s <sup>15d9</sup>                              | 79<br>Au<br>6s <sup>15d10</sup>                             | 80<br>Hg<br>6s <sup>25d10</sup>                              | 81<br>Tl<br>6s <sup>26p1</sup>                | 82<br>Pb<br>6s <sup>26p2</sup>                      | 83<br>Bi<br>6s <sup>26p<sup>3</sup></sup>                   | 84<br>Po<br>6 <i>s</i> 26 <i>p</i> 4                        | 85<br>At<br>6s <sup>26p5</sup>                     | 86<br>Rn<br>6 <i>s</i> 26 <i>p</i> 6                          |       |
| 7                                                               | 87<br>Fr<br>751           | 88<br>Ra<br>752              | 89<br>Ac**<br><sup>7,526,d1</sup>           | 104<br>Rf<br>7 <i>s</i> 26 <i>d</i> 2       | 105<br>Db<br>7 <i>s</i> 26d <sup>3</sup>                    | 106<br>Sg<br>7s <sup>2</sup> 6d <sup>4</sup> | 107<br>Bh<br>7 <i>s</i> 26d <sup>5</sup>               | 108<br>Hs<br>7 <i>s</i> <sup>2</sup> 6d <sup>6</sup> | 109<br>Mt<br>7 <i>s</i> 26d7                                | 110<br>Uun<br>7 <i>s</i> 26d <sup>8</sup>                   | 111<br>Uuu<br><sup>7s16d10</sup>                            | 112<br>Uub<br>7 <i>s</i> 26d10                               |                                               |                                                     |                                                             |                                                             |                                                    |                                                               | 35    |
|                                                                 |                           |                              |                                             |                                             | _                                                           |                                              |                                                        |                                                      |                                                             | <i>f</i> -Tı                                                | ransitio                                                    | on Elem                                                      | ents                                          |                                                     |                                                             |                                                             |                                                    |                                                               |       |
|                                                                 |                           | }                            | *Lantha                                     | anides                                      | 58<br>Ce<br>6s24f <sup>15d1</sup>                           | 59<br>Pr<br>6s24f <sup>35d0</sup>            | 60<br>Nd<br>6s24f45d0                                  | 61<br>Pm<br>6s24135d0                                | 62<br>Sm<br>6s24f65d0                                       | 63<br>Eu<br>6 <i>s</i> 24/75 <i>d</i> 0                     | 64<br>Gd<br>6s24f75d1                                       | 65<br>Tb<br>6\$ <sup>2</sup> 4f <sup>9</sup> 5d <sup>0</sup> | 66<br>Dy<br>6s241 <sup>10540</sup>            | 67<br>Ho<br>6\$24111540                             | 68<br>Er<br>6\$241 <sup>12540</sup>                         | 69<br>Tm<br>6s <sup>2</sup> 4/135 <i>a</i> 0                | 70<br>Yb<br>6\$241 <sup>145</sup> 60               | 71<br>Lu<br>6s24f145d1                                        | 526   |
|                                                                 |                           |                              | **Actini                                    | ides                                        | 90<br>Th<br>7s <sup>2</sup> 5f <sup>0</sup> 6d <sup>2</sup> | 91<br>Pa<br>7 <i>s</i> ²5/²6d1               | 92<br>U<br>7 <i>s</i> 25f <sup>3</sup> 6d <sup>1</sup> | 93<br>Np<br>7 <i>s</i> 25 <i>f</i> 46 <i>d</i> 1     | 94<br>Pu<br>7s <sup>2</sup> 5f <sup>6</sup> 6d <sup>0</sup> | 95<br>Am<br>7s <sup>2</sup> 5f <sup>7</sup> 6d <sup>0</sup> | 96<br>Cm<br>7s <sup>2</sup> 5f <sup>7</sup> 6d <sup>1</sup> | 97<br>Bk<br>7 <i>s</i> 25196d0                               | 98<br>Cf<br>7s <sup>25f<sup>106d0</sup></sup> | 99<br>Es<br>75 <sup>25f116d0</sup>                  | 100<br>Fm<br>7 <i>s</i> 25 <i>f</i> 126d0                   | 101<br>Md<br>75 <sup>25†136d0</sup>                         | 102<br>No<br>7 <i>s</i> 25 <i>f</i> 146 <i>d</i> 0 | 103<br>Lr<br>7s <sup>2</sup> 5f <sup>14</sup> 6d <sup>1</sup> | ย     |

US Car

Sec.

Æ

E Ar


you'll notice the group A numbers indicate the total valence electrons

▲ remember from CHMA that these groups (1-8) are called representative elements (aka main-group elements)

| 1                                              |                             | sentative<br>ments          |                                              |                                               |                                            | d-Transition Elements          |                                  |                                             |                                              |                                               |                                                        |                                              |                                             |                                             | Representative Elements                     |                                                             |                                                           |                                                             |       |
|------------------------------------------------|-----------------------------|-----------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-------|
|                                                | 1A<br>131                   | Group<br>numbers            |                                              |                                               |                                            |                                |                                  |                                             |                                              |                                               |                                                        |                                              |                                             |                                             |                                             |                                                             |                                                           | 8A<br>ns2np6                                                |       |
| 1                                              | 1<br>H<br>1s <sup>1</sup>   | 2A<br>1152                  |                                              |                                               |                                            |                                |                                  |                                             |                                              |                                               |                                                        |                                              | 3A<br>ns <sup>2</sup> np <sup>1</sup>       | 4A<br>ns <sup>2</sup> np <sup>2</sup>       | 5A<br>ns <sup>2</sup> np <sup>3</sup>       | 6A<br>ns²np4                                                | 7A<br>115 <sup>2</sup> 111 <sup>5</sup>                   | 2<br>He<br>192                                              |       |
| Iana 2                                         | 3<br>Li<br>2s <sup>3</sup>  | 4<br>Be<br>25 <sup>2</sup>  |                                              |                                               |                                            |                                |                                  |                                             |                                              |                                               |                                                        |                                              | 5<br>B<br>2s <sup>2</sup> 2p <sup>1</sup>   | 6<br>C<br>2\$ <sup>2</sup> 2p <sup>2</sup>  | 7<br>N<br>2s <sup>2</sup> 2p <sup>3</sup>   | 8<br>O<br>2s <sup>2</sup> 2p <sup>4</sup>                   | 9<br>F<br>2 <i>s</i> <sup>2</sup> 2 <i>p</i> <sup>5</sup> | 10<br>Ne<br>2 <i>s</i> <sup>2</sup> 2 <i>p</i> <sup>6</sup> | 100 0 |
| ned electr                                     | 11<br>Na<br>351             | 12<br>Mg<br>39              |                                              |                                               |                                            |                                |                                  |                                             |                                              |                                               |                                                        |                                              | 13<br>Al<br>3s <sup>2</sup> 3p <sup>1</sup> | 14<br>Si<br>3s <sup>2</sup> 3p <sup>2</sup> | 15<br>P<br>3s <sup>2</sup> 3p <sup>3</sup>  | 16<br>S<br>3s <sup>2</sup> 3p <sup>4</sup>                  | 17<br>Cl<br>3s <sup>2</sup> 3p <sup>5</sup>               | 18<br>Ar<br>3\$ <sup>2</sup> 3p <sup>6</sup>                | -     |
| reriod number, nignest occupied electron level | 19<br>K<br>451              | 20<br>Ca<br>4s <sup>2</sup> | 21<br>Sc<br>4s <sup>2</sup> 3d <sup>1</sup>  | 22<br>Ti<br>4\$ <sup>2</sup> 3\$ <sup>2</sup> | 23<br>V<br>45 <sup>2</sup> 3d <sup>3</sup> | 24<br>Cr<br>45 <sup>1345</sup> | 25<br>Mn<br>4s23d9               | 26<br>Fe<br>4s <sup>2</sup> 3d <sup>6</sup> | 27<br>Co<br>4s²3d7                           | 28<br>Ni<br>4s23d <sup>8</sup>                | 29<br>Cu<br>4s <sup>13</sup> d <sup>10</sup>           | 30<br>Zn<br>4s <sup>2</sup> 3d <sup>10</sup> | 31<br>Ga<br>4s <sup>2</sup> 4p <sup>1</sup> | 32<br>Ge<br>4924p2                          | 33<br>As<br>4s <sup>2</sup> 4p <sup>3</sup> | 34<br>Se<br>4 <i>s</i> <sup>2</sup> 4 <i>p</i> 4            | 35<br>Br<br>4s <sup>2</sup> 4p <sup>5</sup>               | 36<br>Kr<br>45 <sup>2</sup> 4p <sup>6</sup>                 |       |
| SIII (1901                                     | 37<br>Rb<br>554             | 38<br>Sr<br>592             | 39<br>Y<br>5s <sup>2</sup> 4d <sup>1</sup>   | 40<br>Zr<br>5s <sup>2</sup> 4d <sup>2</sup>   | 41<br>Nb<br>5s14d4                         | 42<br>Mo<br>5s14d5             | 43<br>Tc<br>5s14d <sup>6</sup>   | 44<br>Ru<br>5s14d7                          | 45<br>Rh<br>5s14d8                           | 46<br>Pd<br>5314d10                           | 47<br>Ag<br>5s14d10                                    | 48<br>Cd<br>5524d10                          | 49<br>In<br>5s <sup>25p1</sup>              | 50<br>Sn<br>5325p2                          | 51<br>Sb<br>5s <sup>2</sup> 5p <sup>3</sup> | 52<br>Te<br>5 <i>s</i> <sup>2</sup> 5 <i>p</i> <sup>4</sup> | 53<br>1<br>5\$25p5                                        | 54<br>Xe<br>5\$25p6                                         |       |
| ni 6                                           | 55<br>Cs<br>651             | 56<br>Ba<br>652             | 57<br>La*<br>6s <sup>2</sup> 5d <sup>1</sup> | 72<br>Hf<br>6s²5d²                            | 73<br>Ta<br>6s²5d1                         | 74<br>W<br>6s²5d4              | 75<br>Re<br>6\$25d5              | 76<br>Os<br>6,25.d5                         | 77<br>Ir<br>6s <sup>2</sup> 5d <sup>7</sup>  | 78<br>Pt<br>6s15d9                            | 79<br>Au<br>6s15d10                                    | 80<br>Hg<br>65 <sup>2</sup> 5d <sup>10</sup> | 81<br>Tl<br>65 <sup>26p1</sup>              | 82<br>Pb<br>6 <i>s</i> 26 <i>p</i> 2        | 83<br>Bi<br>6s <sup>2</sup> 6p <sup>3</sup> | 84<br>Po<br>65 <sup>2</sup> 6p <sup>4</sup>                 | 85<br>At<br>6.s <sup>2</sup> 6p <sup>5</sup>              | 86<br>Rn<br>6,5 <sup>2</sup> 6/*                            |       |
| 7                                              | 87<br>Fr<br>75 <sup>1</sup> | 88<br>Ra<br>7¢              | 89<br>Ac**<br><sup>7s26d1</sup>              | 104<br>Rf<br>7\$ <sup>2</sup> 6d <sup>2</sup> | 105<br>Db<br>7 <i>s</i> 26d <sup>3</sup>   | 106<br>Sg<br>7,26d4            | 107<br>Bh<br>7\$26d <sup>5</sup> | 108<br>Hs<br>7.s26.d5                       | 109<br>Mt<br>7s <sup>2</sup> 6d <sup>7</sup> | 110<br>Uun<br>75 <sup>2</sup> 6d <sup>8</sup> | 111<br>Uuu<br><sup>75<sup>1</sup>6d<sup>10</sup></sup> | 112<br>Uub<br>7 <i>s</i> 26d <sup>10</sup>   |                                             | 1                                           |                                             |                                                             |                                                           |                                                             |       |
| 4                                              |                             |                             |                                              |                                               |                                            |                                |                                  |                                             |                                              | f-T                                           | ansitio                                                | n Elem                                       | ents                                        |                                             |                                             |                                                             |                                                           |                                                             |       |
|                                                |                             |                             |                                              |                                               | 58                                         | 59                             | 60                               | 61                                          | 62                                           | 63                                            | 64                                                     | 65                                           | 66                                          | 67                                          | 68                                          | 69                                                          | 70                                                        | 71                                                          |       |
|                                                |                             | *Lanthanides                |                                              | anides                                        | Ce                                         | Pr<br>6324/35.49               | Nd                               | Pm<br>6s24/35d0                             | Sm<br>6s <sup>24/65d<sup>0</sup></sup>       | Eu<br>6924/75dP                               | Gd                                                     | Tb<br>6s24/95.00                             | Dy                                          | Ho                                          | Er                                          | Tm<br>6s24/135.00                                           | Yb                                                        | Lu                                                          |       |
|                                                | "Actinides                  |                             |                                              |                                               | 90<br>Th                                   | 91<br>Pa                       | 92<br>U                          | 93<br>Np<br>75251%6d1                       | 94<br>Pu<br>7,25,766,49                      | 95<br>Am                                      | 96<br>Cm<br>7ø5176d                                    | 97<br>Bk                                     | 98<br>Cf                                    | 99<br>Es                                    | 100<br>Fm                                   | 101<br>Md                                                   | 102<br>No                                                 | 103<br>Lr                                                   |       |
|                                                |                             |                             |                                              |                                               | , anal-ada                                 | , 1-31-040 ·                   | steel - out                      | , peap color                                | , salada                                     | - anal - other                                | - anaj - dan                                           | 1.0-01-000                                   | - anaprodut                                 | - seal day                                  | - Jean-alle                                 | 3 37 6                                                      | A AND                                                     | and a start                                                 |       |



# 11.11 atomic properties and the periodic table



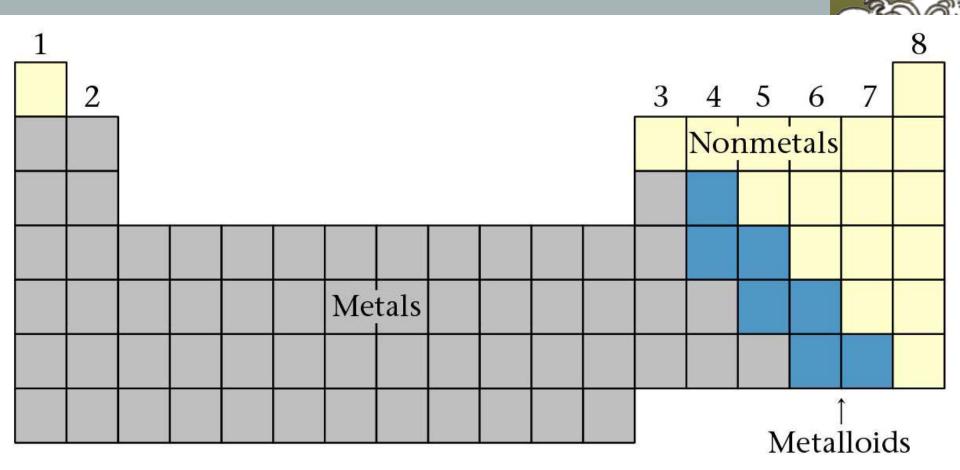


# 11.11 atomic properties and the periodic table

опытъ системы элементовъ.

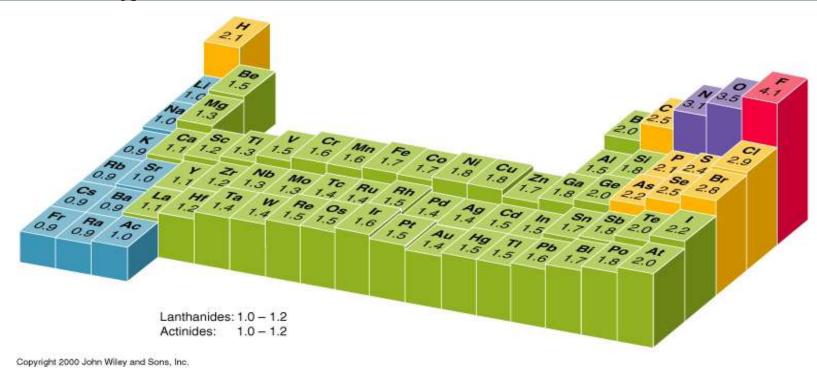
основанной на ихъ атомкомъ въсъ и химическомъ сходствъ.

Ti = 50 Zr = 90 ? = 180. V=51 Nb= 94 Ta=182. Cr=52 Mo= 96 W=186. Mn=55 Rh=104,4 Pt=197,1 Fe=56 Rn=104.1 Ir=198.  $N_{i} = C_{0} = 59$   $P_{i} = 106.6 O_{i} = 199.$ H = 1 Cu=63,4 Ag=108 Hg=200. Be = 9 Mg = 24 Zn = 65,2 Cd = 112 B=11 A1=27,1 ?=68 Ur=116 Au=197? C=12 Si=28 ?=70 Sn=118 N=14 P-31 As=75 Sb=122 B1=210? 0 = 16 S = 32 Se = 79,4 Te = 128? F=19 Cl=35,6Br=80 1-127 Li = 7 Na = 23 K = 39 Rb = 854 Cs = 133 Tl = 204.Ca=40 Sr=87. Ba=137 Pb=207. ?=45 Ct=92 ?Er=56 La=94 ?Y1=60 Di=95 ?In - 75,6 Th = 118?


Д. Мендальнь



#### 11.11 atomic properties and the Sec. 2 periodic table Main-group elements s-block 1A8A p-block **≺**1*s***≻** 2A <1s> 3A 4A 5A 6A 7A Transition elements d-block 3p3B 4B 5B 6B 7B ~ 8B- $\sim 1B$ 2B3d. 4dSp 5d $\mathbf{b}$ 6d Inner-transition elements 🕨 f-block


## metals and nonmetals

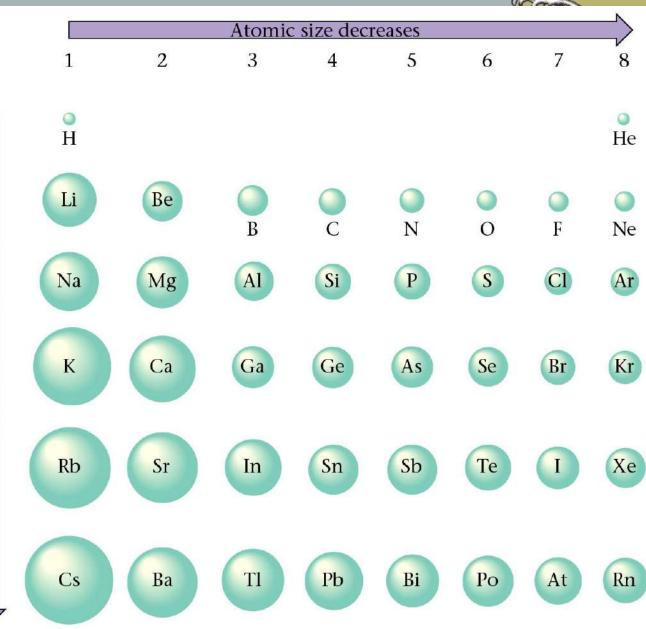
Metals tend to lose e- to make positive ions, nonmetals will gain to form negative ions



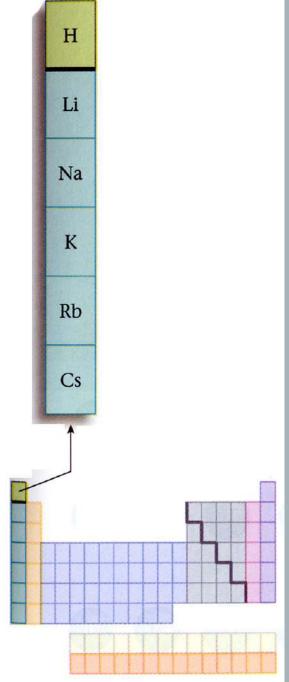
## Electronegativity

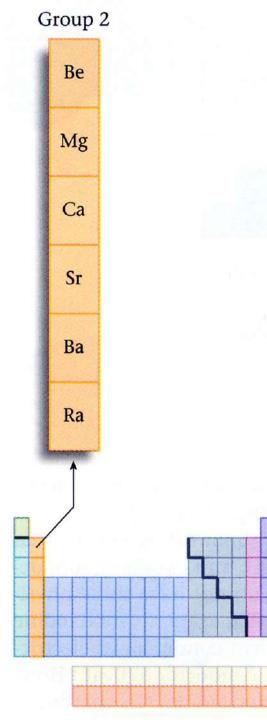
▲ a chemical property that describes the ability of an atom to attract electrons towards itself. An atom's electronegativity is affected by both its atomic weight and the distance that its valence electrons reside from the charged nucleus.




# atomic size

 see a trend?
 can you explain the trend?
 going down


going down a group is just adding shells; that's easy


Atomic size increases

but why the horizontal trend?



exp shows for the Gr1A, Cs loses electrons very easily, then Rb, then K, Na; Li doesn't lose them easily





## Consider group 2 Ra is easiest to steal from; Be least likely to give up electron

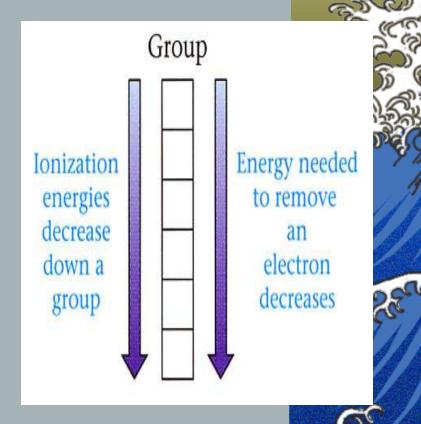
In the other side
 (nonmetals) the opposite
 occurs; the upper guys are
 most likely to steal
 electrons

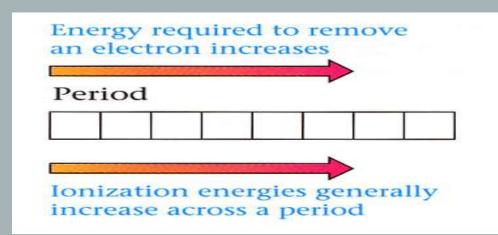
summary: the most active metals are lower left; the most active nonmetals are upper right



# A as we go across the atomic number (# protons) is increasing!

- And the protons pull in the electron cloud a little tighter each time
- ★ ∴ it gets smaller going across





# ionization energies

you put E into an atom, and eventually the most loosely held electron comes flying off

 $M_{(g)} \rightarrow M^{+}_{(g)} + e^{-}$ 

the energy required to do this is less and less as we go down a group (the e- is farther away and easier to remove)





but as we go across, as we go more towards the area of the Nonmetals it becomes more difficult to strip one off, and the ionization energy gets higher and higher



### mini-summary

- A the elements at the lower left have lowest ionization energy and very easily react w/ things (they are the most chemically active metals!)
- A the elements at the upper right have the highest ionization energy; they won't lose electrons, (they are most chemically active nonmetals)



### **Questions?**



