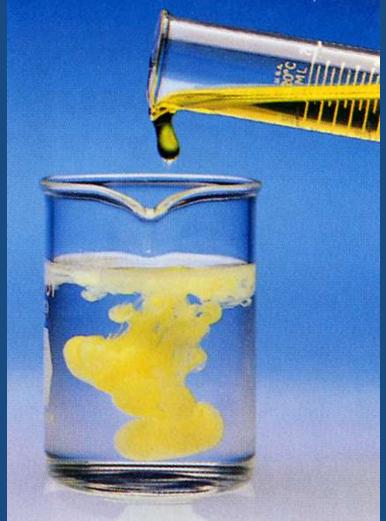

chapter 8 reactions in aqueous solutions

warning: another big chapter built on previous chapters!

- the most important rxns in our lives happen in water
- here we look at some rxns that take place in water
- and look at why they happen
- and learn to predict what they are making

8.1 predicting whether a reaction will occur

 why do reactants "want" to form products anyway?

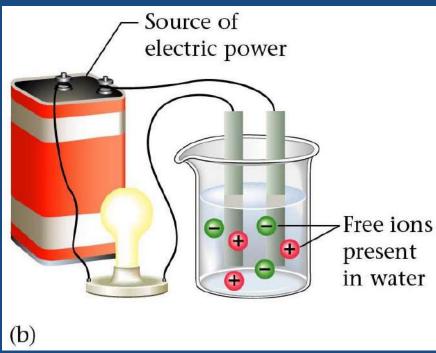

 those are driving forces, the most common are... Reaction will happen if:

1. formation of a solid
2. formation of water
3. transfer of electrons
4. formation of a gas

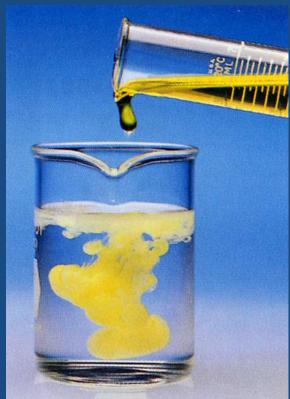
• <u>if these might result, the reaction is</u> probably going to happen

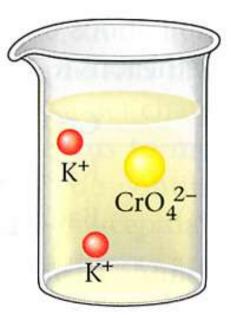
8.2 reactions in which a solid forms

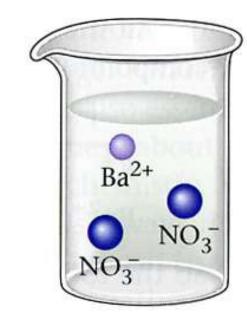
- one driving force is the formation of a solid
- solid = precipitate
- <u>called precipitation</u>
 <u>rxn</u>
- when a rxn like this happens, can we figure out what was formed?



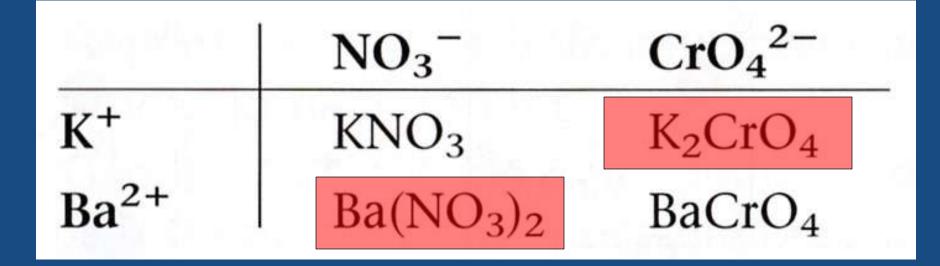
first we have to consider what is even a *possible* product


 how? who are the players? why will they get together? no problem! relax, fercryinoutloud!


what happens when an ionic compound dissolves in water?


- virtually every time an ionic cmpd dissolves in water all the ions separate!
- <u>= dissociation</u>
- we know this b/c ionic solns are great conductors of electricity

- when <u>each</u> ionic cmpd "unit" breaks up into its ions the cmpd is called a <u>strong</u> <u>electrolyte</u>
- important point! when ionic cmpds dissolve their separated ions are floating around (duh!)
- for the opening picture...
- <u>K₂CrO₄ + Ba(NO₃)₂ --> Products</u> looks like this...


 $K_2CrO_4(aq)$ lons separate when the solid dissolves. $Ba(NO_3)_2(aq)$ Ions separate when the solid dissolves.

 but which ions are getting together to form the yellow precipitate?

how to decide which products form

- whatever forms has to be a <u>cation/anion</u> combo
- opposites attract
- the <u>only possible combos</u> are these below
- but which is the precipitate?

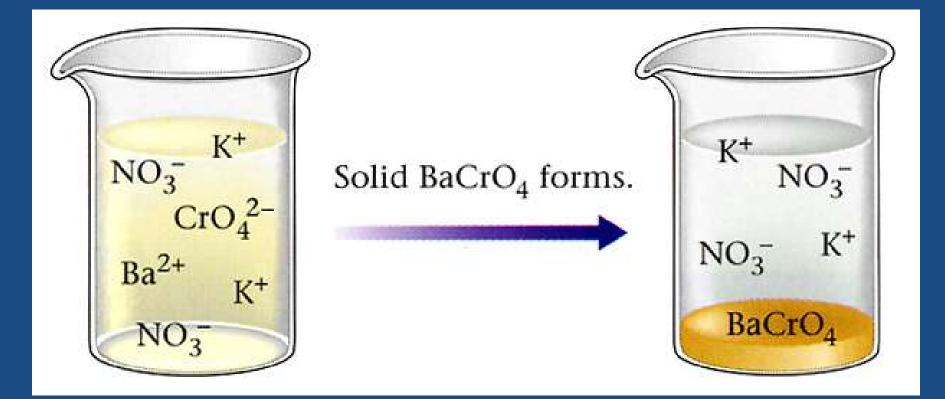
ikan néha i	NO ₃ ⁻	$\operatorname{CrO_4}^{2-}$
K ⁺	KNO ₃	K ₂ CrO ₄
Ba ²⁺	$Ba(NO_3)_2$	BaCrO ₄

- it fer sure ain't the reactants; why would they react?
- so the ppt is either KNO₃ or BaCrO₄
- but which???
- an experienced chemist knows, but...
- you can use their years of experience by...

using <u>solubility rules</u>

- after a b-zillion experiments solubility rules have been pretty well established, but first...
- **soluble** solid means <u>it</u> readily <u>dissolves</u>
- **insoluble** or **slightly soluble** means nothing/very little dissolves
- nicely summarized on Table 8.1 and Fig 8.3

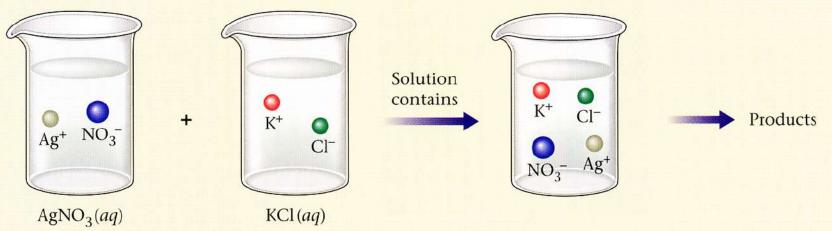
TABLE 8.1


General Rules for Solubility of lonic Compounds (Salts) in Water at 25 °C

- 1. Most nitrate (NO_3^-) salts are soluble.
- 2. Most salts of Na⁺, K⁺, and NH₄⁺ are soluble.
- Most chloride salts are soluble. Notable exceptions are AgCl, PbCl₂, and Hg₂Cl₂.
- 4. Most sulfate salts are soluble. Notable exceptions are BaSO₄, PbSO₄, and CaSO₄.
- Most hydroxide compounds are only slightly soluble.* The important exceptions are NaOH and KOH. Ba(OH)₂ and Ca(OH)₂ are only moderately soluble.
- 6. Most sulfide (S²⁻), carbonate (CO₃²⁻), and phosphate (PO₄³⁻) salts are only slightly soluble.*

*The terms *insoluble* and *slightly soluble* really mean the same thing: such a tiny amount dissolves that it is not possible to detect it with the naked eye.

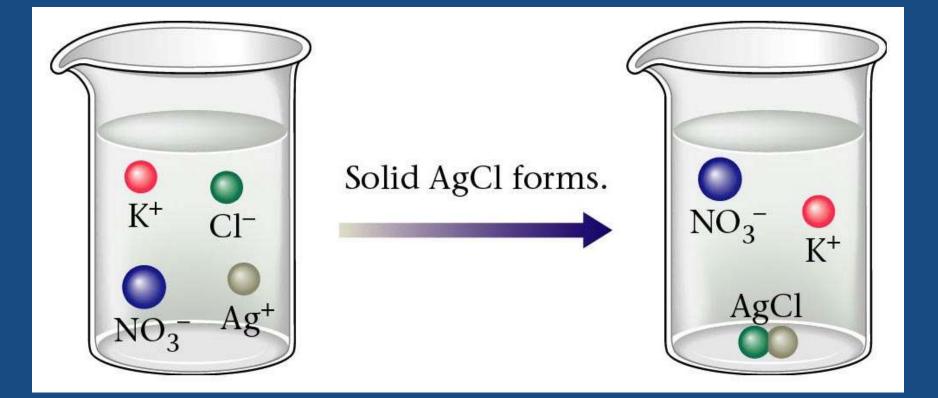
(a) Soluble compounds				
NO ₃ ⁻ salts				
Na ⁺ , K ⁺ , NH ₄ ⁺ salts				
Cl ⁻ , Br ⁻ , I ⁻ salts	Except for those containing	Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺		
SO ₄ ²⁻ salts	Except for those containing	Ba ²⁺ , Pb ²⁺ , Ca ²⁺		
(b) Insoluble compounds $S^{2-}, CO_3^{2-}, PO_4^{3-}$ salts				
OH ⁻ salts	Except for those containing	Na ⁺ , K ⁺ , Ca ²⁺		


use whichever helps you most (p 218); they are your friends;)

- using these rules we see that this is what really happened
- the insoluble product, <u>the precipitate</u>, <u>was</u> <u>BaCrO4</u>
- ready to try an example?

example

- when aqueous solns of silver nitrate and potassium chloride are mixed a white solid forms; what is it? and what's the equation?
- AgNO_{3(aq)} + KCl_(aq) ---> white solid
- the players are Ag⁺, NO₃⁻ and K⁺, Cl
- which two are getting together???


(aq

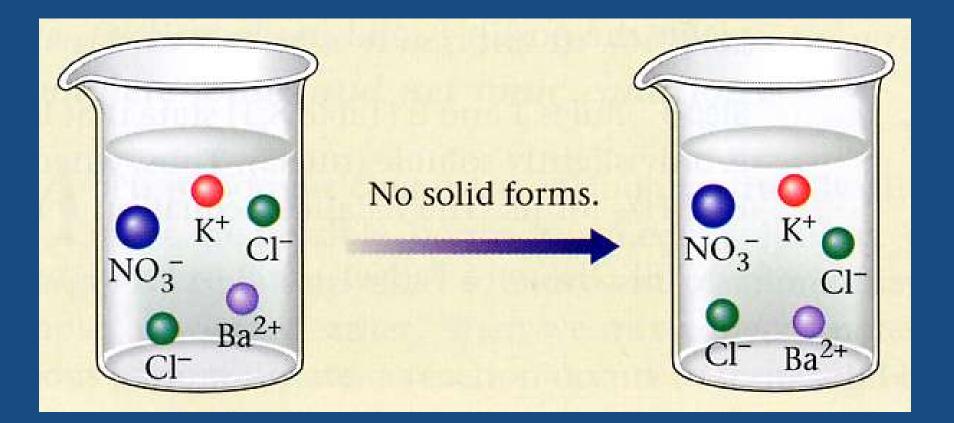
- Table 8.1 says all nitrates are soluble so no to the nitrate possibility (KNO₃)
- BUT it says chlorides are soluble except those including Ag!!!
- so the white solid is the Ag⁺/Cl⁻ combo, AgCl, so...

$$Ag^{+} + NO_{3}^{-} + K^{+} + Cl^{-} \rightarrow Products$$

$$Possible solid products$$

the full balanced equation is: AgNO_{3(aq)} + KCl_(aq) ---> AgCl_(s) + KNO_{3(aq)}

How to Predict Precipitates When Solutions of Two Ionic Compounds Are Mixed


- **STEP 1** Write the reactants as they actually exist before any reaction occurs. Remember that when a salt dissolves, its ions separate.
- **STEP 2** Consider the various solids that could form. To do this, simply *exchange the anions* of the added salts.
- **STEP 3** Use the solubility rules (Table 8.1) to decide whether a solid forms and, if so, to predict the identity of the solid.

example

• what will happen when KNO_{3(aq)} and BaCl_{2(aq)} get together? what is the equation?

$$K^+ NO_3^- Ba^{2+} Cl^-$$

players

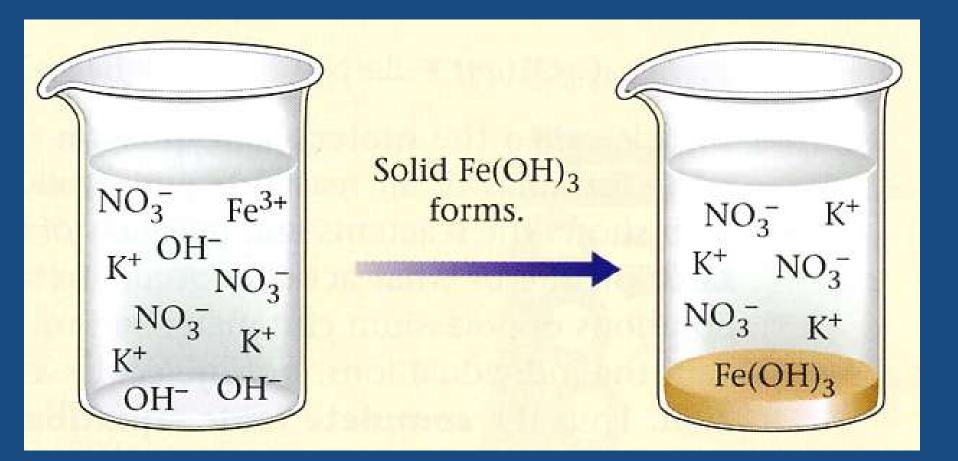


NR!

example

- what will happen when Na₂SO_{4(aq)} and Pb(NO₃)_{2(aq)} get together? what is the equation?
- players are:

Na⁺ SO₄²⁻ Pb²⁺ NO₃⁻


 $Na_2SO_{4(aq)} + Pb(NO_3)_{2(aq)} --> PbSO_{4(s)} + 2NaNO_{3(aq)}$

 notice again the solid has a little (s) after it, and the whole thing got balanced

example

- what will happen when KOH_(aq) and Fe(NO₃)_{3(aq)} get together? what is the equation?
- players are:

$K^+OH^-Fe^{3+}NO_3^-$

 $3KOH_{(aq)} + Fe(NO_3)_{3(aq)} --> Fe(OH)_{3(s)} + 3KNO_{3(aq)}$

 notice again the solid has a little (s) after it, and the whole thing got balanced

8.3 Describing Reactions in Aqueous Solutions

- remember: 2 ionic cmpds might dissolve in water
- cations from one can react w/ anions from another to form precipitate
- this whole reaction with all players fully dressed is the molecular equation: <u>All</u> <u>compounds represented in full form</u>
- e.g....

 $AgNO_{3(aq)} + KCl_{(aq)} \rightarrow AgCl_{(s)} + KNO_{3(aq)}$

eq from above can show dissociation in a <u>complete ionic equation: all</u> <u>compounds shown "broken" up</u> Ag⁺(aq) + NO₃⁻(aq) + K⁺(aq) + Cl⁻(aq) → AgCl(s) + K⁺(aq) + NO₃⁻(aq)

- why didn't AgCl get broken up? (b/c it's a solid)
- check the Solubility Table!

- K⁺ and NO₃⁻ aren't playing! = <u>spectator ions: DO NOT</u> participate in reaction
- resulting equation after spectators are thrown out = net ionic equation
- $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$

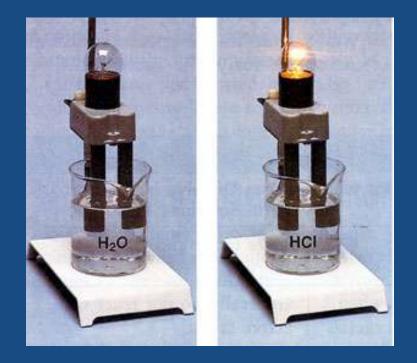
- aqueous potassium hydroxide is mixed with aqueous iron(III) nitrate to form solid iron(III) hydroxide and aqueous potassium nitrate
- KOH(aq) + Fe(NO₃)₃(aq) --> Fe(OH)₃(s) + KNO₃(aq)
- 3KOH(aq) + Fe(NO₃)₃(aq) --> Fe(OH)₃(s) + 3KNO₃(aq)
- 3K + + 3OH⁻ + Fe³⁺ + 3NO₃⁻ --> Fe(OH)₃(s)
 + 3K⁺ + 3NO₃⁻
- 30H⁻ + Fe³⁺ --> Fe(OH)₃(s)

- aqueous sodium sulfide is mixed with aqueous copper(II) nitrate to form solid copper(II) sulfide and aqueous sodium nitrate
- Na₂S(aq) + Cu(NO₃)₂(aq) --> CuS(s) + NaNO₃(aq)
- Na₂S(aq) + Cu(NO₃)₂(aq) --> CuS(s) + 2NaNO₃(aq)
- 2Na + + S²⁻ + Cu²⁺ + 2NO₃⁻ --> CuS(s) + 2Na⁺ + 2NO₃⁻
- S²⁻ + Cu²⁺ --> CuS(s)

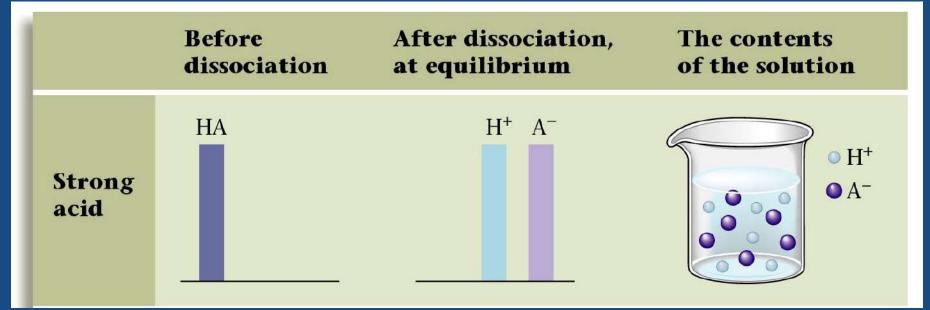
- aqueous nickel(II) nitrate is mixed with aqueous potassium carbonate to form solid nickel(II) carbonate and aqueous potassium nitrate
- Ni(NO₃)₂(aq) + K₂CO₃(aq) --> NiCO₃(s) + KNO₃(aq)
- Ni(NO₃)₂(aq) + K₂CO₃(aq) --> NiCO₃(s) + 2KNO₃(aq)
- Ni²⁺ + 2NO₃⁻ + 2K⁺ + CO₃²⁻ --> NiCO₃(s) + 2K⁺ + 2NO₃⁻
- $Ni^{2+} + CO_3^{2-} --> NiCO_3(s)$

- aqueous potassium hydroxide is mixed with aqueous iron(III) nitrate to form solid iron(III) hydroxide and aqueous potassium nitrate
- KOH(aq) + Fe(NO₃)₃(aq) --> Fe(OH)₃(s) + KNO₃(aq)
- 3KOH(aq) + Fe(NO₃)₃(aq) --> Fe(OH)₃(s) + 3KNO₃(aq)
- 3K + + 3OH⁻ + Fe³⁺ + 3NO₃⁻ --> Fe(OH)₃(s)
 + 3K⁺ + 3NO₃⁻
- 30H⁻ + Fe³⁺ --> Fe(OH)₃(s)

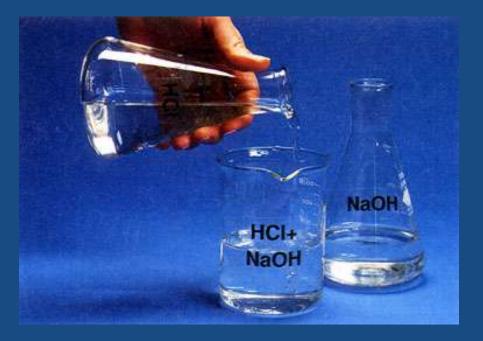
8.4 reactions that form water: acids and bases



- here we introduce two new things: acids and bases
- acids are sour


 have been known for centuries (mostly as "mineral acids")

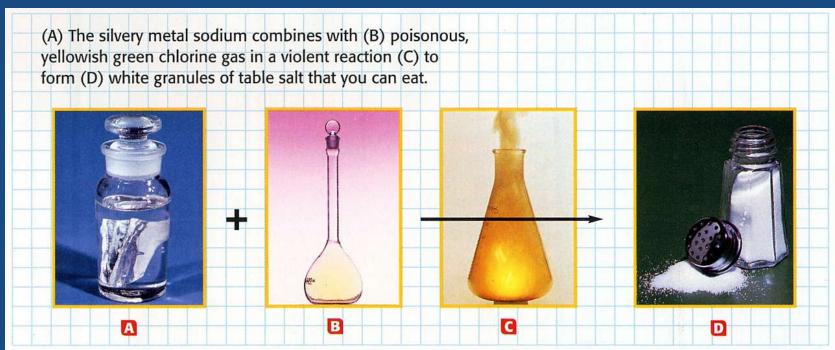
- their nature was first discovered by Svante Arrhenius
- they always behaved as strong electrolytes for him, so they must be ionized in water
- Arr said they give off H+ ions (protons) when dissolved in water


- some acids ionized 100%!
- they are called strong acids
- like HCl, HNO₃, H₂SO₄

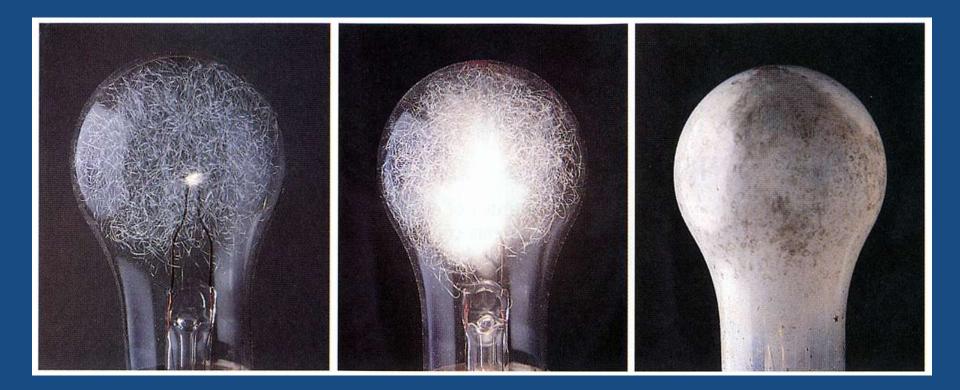
- bases (aka alkalis) are slippery and taste bitter
- Arr defined a base as a substance that coughed up an OH⁻ ion
- those that 100% ionize (e.g. KOH & NaOH) are called strong bases

- when an acid soln and a base soln get together, the H⁺ react with the OH- to make...
- water!
- to make water was one of our driving forces!
- the other product is a salt (ionic cmpd)

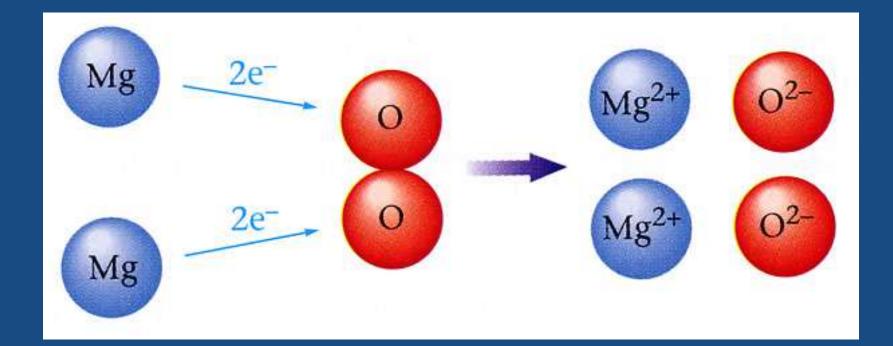
- nitric acid reacts with aqueous potassium hydroxide. write mol, ionic, and net ionic equation
- HNO₃(aq) + KOH(aq) --> H₂O(l) + KNO₃(aq)
- $H^+ + NO_3^- + K^+ + OH_- --> H_2O + K^+ + NO_3^-$
- H⁺ + OH- --> H₂O

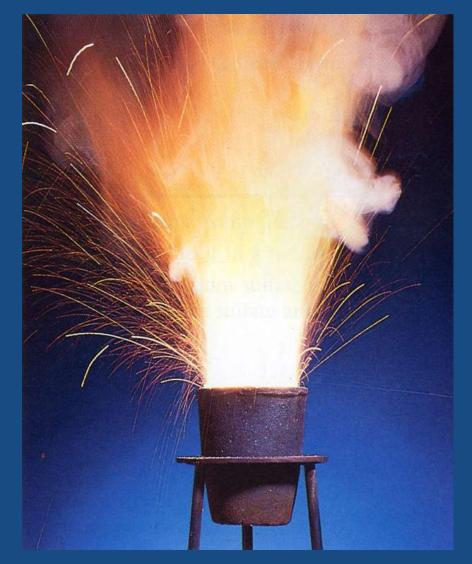

- hydrobromic acid (a strong acid) reacts with aqueous sodium hydroxide. write mol, ionic, and net ionic equation
- $HBr(aq) + NaOH(aq) --> H_2O(l) + NaBr(aq)$
- H⁺ + Br⁻ + Na⁺ + OH- --> H₂O + Na⁺ + Br⁻
- H⁺ + OH- --> H₂O

- sulfuric acid (a strong acid) reacts with aqueous potassium hydroxide. write mol, ionic, and net ionic equation
- $H_2SO_{4(aq)} + 2KOH_{(aq)} --> 2H_2O_{(l)} + K_2SO_{4(aq)}$
- 2H⁺ + SO₄²⁻ + 2K⁺ + 2OH⁻ --> 2H₂O + 2K⁺ + SO₄²⁻
- H⁺ + OH⁻ --> H₂O

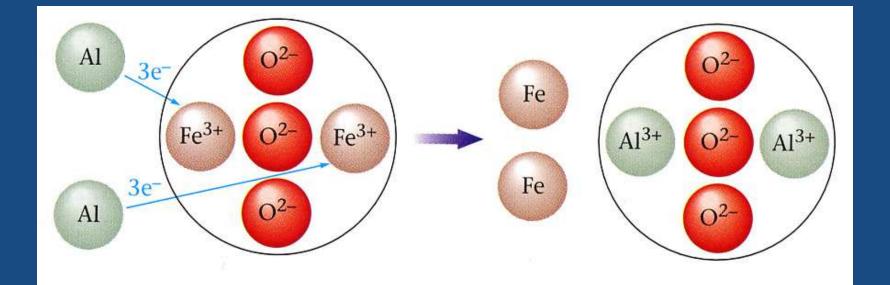

8.5 reactions of metals with nonmetals (oxidation-reduction)

- we spent a lot of time learning how to name the results of metals getting together with nonmetals
- now we learn exactly why they get together


- when NaCl is made, how does the Na become Na+ and the Cl become Cl-?
- transfer of electrons (Redox reaction)
- the tendency to transfer electrons from a metal to a nonmetal is *the third driving force*



- a reaction that involves a transfer of electrons is called an oxidationreduction reaction
- aka redox



- 2Mg + O₂ --> 2MgO
- the Mg used to be neutral; now it has a 2+ charge
- the oxygen used to be neutral; now it has a -2 charge
- how???

- another example:
 2Al + Fe₂O₃ -->
 2Fe + Al₂O₃
- notice what happened to Al: Al ---> Al³⁺
- Al lost 3 electrons
- Fe gained 3 e-: Fe³⁺ --> Fe



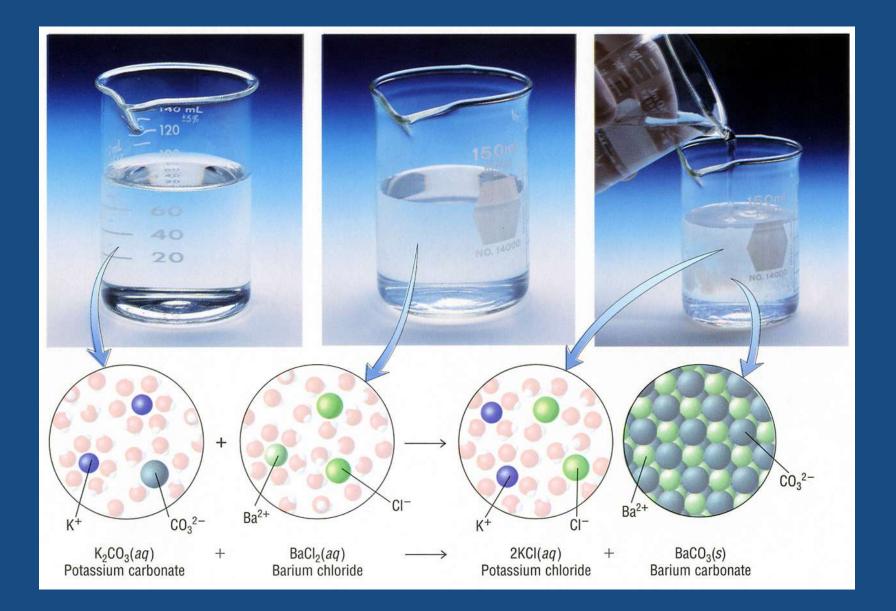
what happened here?
 2Al + 3l₂ --> 2All₃

 Al became Al³⁺ by losing 3 electrons

I went from neutral to I⁻
 ; by gaining an electron

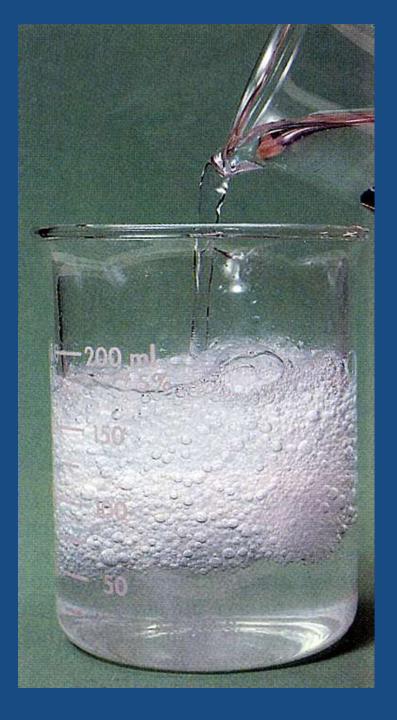
• 2Cs + F₂ --> 2CsF

- what happened with the electrons?
- Cs went from neutral to Cs⁺
- it lost an electron
- Cs --> Cs⁺ + e⁻
- F went from neutral to F⁻
- it gained an electron
- F + e- --> F


- 2Na + Br₂ --> 2NaBr
- how many e- were lost or gained?
- Na went from neutral to Na+, so it lost an electron:
- Na --> Na⁺ + e⁻
- Br went from neutral to Br⁻ so it gained one:
- Br + e⁻ --> Br⁻

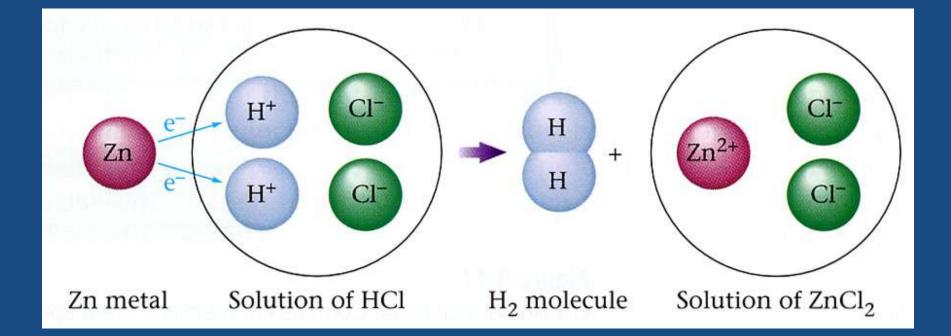
- one more thing: any reaction which involves sucking up an oxygen is *also* a redox reaction (in fact, it got its name from that); e.g...
- $CH_4 + 2O_2 --> CO_2 + 2H_2O_2$
- more on that in CHM B

8.6 ways to <u>classify</u> reactions

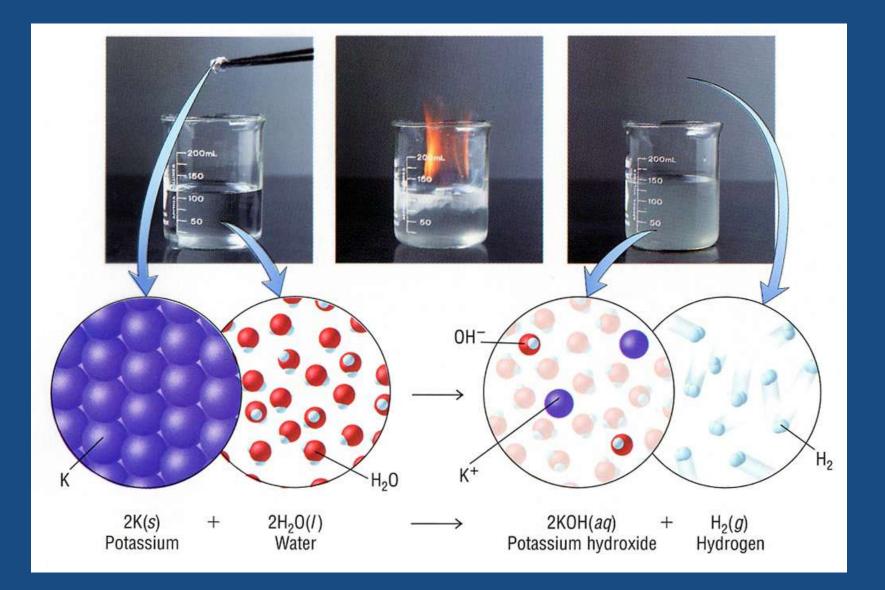

- there are literally millions of different rxns (as with animals)
- here we will intro classifying them
- we will classify the rxns involving those driving forces

- the precipitation reactions are also called double-displacement rxns
- remember this?:
 AgNO₃(aq) + KCl(aq) ---> AgCl(s) + KNO₃(aq)
- could also be called dd rxns because two things are getting displaced; there is a double swap of ions:

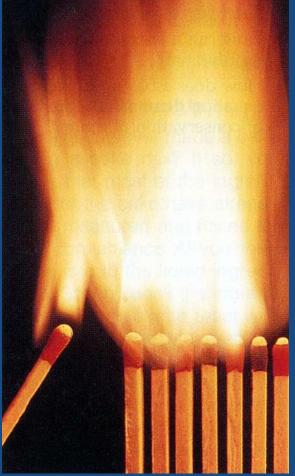
- those rxns whose net ionic equation were:
 H⁺---> H₂O
- they are also known as acid-base rxns

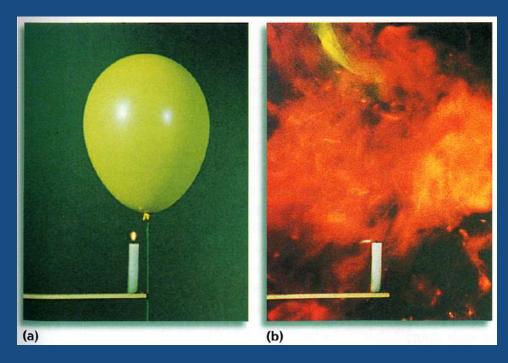

 (repeat alert!) the rxns we just did which involve transferring electrons from a metal to a nonmetal are oxidation-reduction rxns

- one we haven't discussed is the formation of a gas as a driving force
- one common rxn here goes something like this: Zn(s) + 2HCl(aq) --> H₂(g) + ZnCl₂(aq)
- let's break this equation down and see what's happening...


Zn(s) +	- 2HCl(<i>aq</i>)	\rightarrow H ₂ (g) +	$ZnCl_2(aq)$
Contains uncharged Zn atoms	Really $2H^+(aq) + 2CI^-(aq)$	Contains uncharged H atoms	Really $Zn^{2+}(aq) + 2Cl^{-}(aq)$

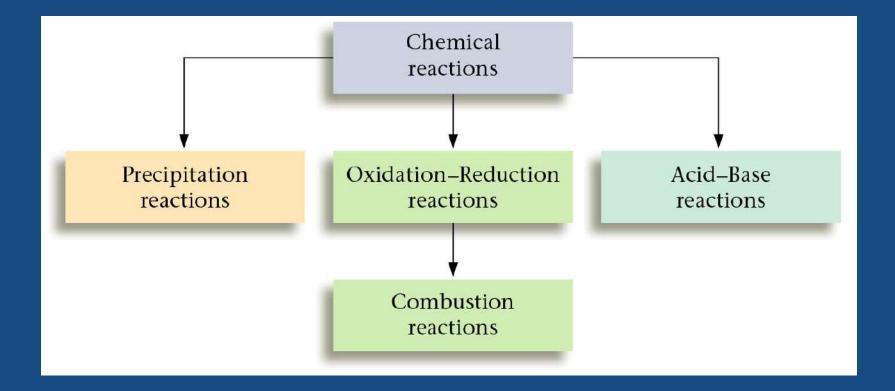
 do you see the transfer of electrons here? it can be classified as a redox rxn, but!


- notice only a single type of ion has been exchanged (not a double exchange as before)
- these are also <u>called single-replacement</u>
 <u>rxns</u>

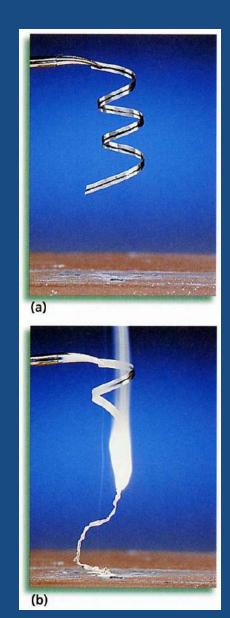

A + BC ---> B + AC

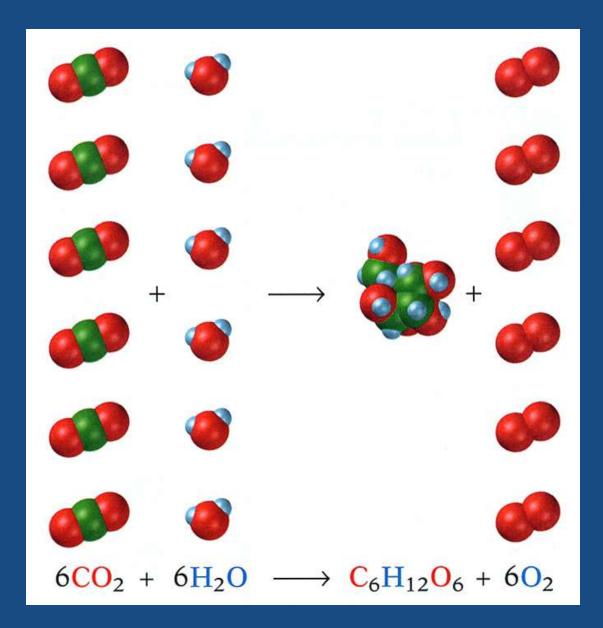
8.7 other ways to classify reactions

- so far most common are: ppt rxns acid-base rxns redox rxns
- here are some other wellknown and often used...



- some redox reactions involve <u>burning</u> something <u>in oxygen</u> to give of heat and light producing CO₂ AND H₂O
- called combustion rxns, like the burning of lab gas:
- \longrightarrow CH₄ + 2O₂ --> CO₂ + 2H₂O

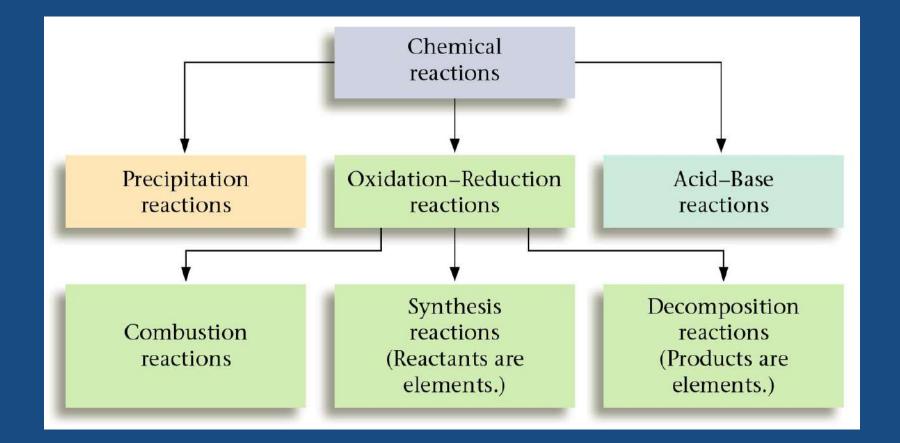

a summary so far



synthesis (combing)

rxns

- <u>2+ become 1</u>
- when a cmpd is formed from simpler stuff
- synthesis rxn
- C + O₂ --> CO₂
- N₂ + O₂ --> 2NO
- Mg + F₂ --> MgF₂
- can you see that all these are also redox rxns?



decomposition rxns

- guess what? here something decomposes, or breaks down
- $2H_2O --> 2H_2 + O_2$
- 2HgO --> 2Hg + O₂
- 2NaCl --> 2Na + Cl₂
- just <u>opposite of synthesis</u> and are a subclass of redox again (1 becomes 2+)
- here's a summary...

a summary

- 4NH₃ + 5O₂ --> 4NO + 6H₂O
- redox; combustion
- S₈ + 8O₂ --> 8SO₂
- redox; synthesis/combustion
- 2Al + 3Cl₂ --> 2AlCl₃
- redox: synthesis

- 2AlN --> 2Al + N₂
- redox; decomposition
- $BaCl_{2(aq)}$ + $Na_2SO_{4(aq)}$ --> $BaSO_{4(s)}$ + $2NaCl_{(aq)}$
- ppt (and double disp)
- 2Cs + Br₂ --> 2CsBr
- redox; synthesis

- KOH + HCl --> H₂O + KCl
- acid-base (and dd)
- 2C₂H₂ + 5O₂ --> 4CO₂ + 2H₂O
- redox; combustion
- 2Ni + 4O₂ --> 2NiO
- redox; synthesis