Chapter 3 <u>Chemical Foundations:</u> <u>elements, atoms, and ions</u>

big chapter; buckle your seat belts

- The building blocks of life and the changes they undergo are unbelievably important and a great source of curiosity
- Greeks first tried to figure out what every thing is made of
- They believed all was made of air, water, fire, and earth

- For 2000 years people just dabbled
- When <u>Robert</u>
 <u>Boyle</u> came along (17th century) things began to change
- He insisted on experimentation
- He argued that an element should be anything that <u>could</u> not be broken down (an atom) (not air and

water, etc.)

3.1 The Elements

- Remember there are only over 100 of these things which make up everything in the **Universe**
- of 115 known elements, 88 are natural
- what are the others?

How would you like to memorize the periodic table? <u>Need help?</u>

Only a **few** of these elements make up **most** of Earth *and* your body

• Note:

Even though oxygen is the clear winner in both places, it is mostly wrapped up in compounds (such as iron oxide)

- Clarification:
 "Element" can be used:
- to mean <u>a single atom</u>

✓ to mean <u>a sample</u> (as in *air contains the element oxygen*)

 \checkmark generically (as in the body contains the element sodium)

3.2 Symbols for the Elements

- Some <u>names of elements</u> <u>come from Greek, Latin,</u> <u>and German</u>
- <u>example: Gold was called</u>
 <u>aurum</u> "Au" (Latin)
 meaning the dawn
- Bromine comes from βρωμος, Greek for stench
- Some named for places

 or people (e.g. plutonium for Pluto, Einsteinium for Einstein)

- Usually <u>names</u> are <u>abbreviated</u> called <u>symbols</u>
- First letter ALWAYS capitalized
- <u>second letter</u>, if there is one, <u>is not</u>
- sometimes the original Greek or Latin is preserved in the symbol if not the name (e.g. gold is Au)
- you must know the following chart

TABLE 3.3

The Names and Symbols of the Most Common Elements

Element	Symbol	Element		Symbol
aluminum	AI	lithium		Li
antimony (stibium)*	Sb	magnesium		Mg
argon	Ar	manganese		Mn
arsenic	As	mercury (hydrargyrum)		Hg
barium	Ba	neon		Ne
bismuth	Bi	nickel		Ni
boron	В	nitrogen		Ν
bromine	Br	oxygen		0
cadmium	Cd	phosphorus		Р
calcium	Ca	platinum		Pt
carbon	С	potassium (kalium)		K
chlorine	CI	radium		Ra
chromium	Cr	silicon		Si
cobalt	Co	silver (argentium)		Ag
copper (cuprum)	Cu	sodium (natrium)		Na
fluorine	F	strontium		Sr
gold (aurum)	Au	sulfur	S	
helium	He	tin (stannum)		Sn
hydrogen	Н	titanium		Ti
iodine	1	tungsten (wolfram)		W
iron (ferrum)	Fe	uranium		U
lead (plumbum)	Pb	zinc		Zn

*Where appropriate, the original name is shown in parentheses so that you can see the sources of some of the symbols.

3.3 Dalton's Atomic Theory

- In the <u>1700s people knew</u> these:
 - <u>most</u> natural <u>things</u> were really <u>mixtures</u>
 - ✓ pure substances are either elements or compounds
 - a <u>compound is made of the</u> <u>same ratio of stuff</u> no matter where it comes from (<u>law of</u> <u>constant composition</u>)

John Dalton in early 1800s knew this and developed theory...

Dalton's Atomic Theory

- 1. Elements are made of tiny particles called atoms.
- 2. All atoms of a given element are identical.
- **3.** The atoms of a given element are different from those of any other element.
- 4. Atoms of one element can combine with atoms of other elements to form compounds. A given compound always has the same relative numbers and types of atoms.
- 5. Atoms are indivisible in chemical processes. That is, atoms are not created or destroyed in chemical reactions. A chemical reaction simply changes the way the atoms are grouped together.

- his model *explained* a lot and even *predicted* the existence of other chemicals like these
- <u>Dalton's Atomic Theory was not perfect but was</u> a great start

3.4 Formulas of Compounds

 Chemical <u>formulas tell</u> you <u>what</u> and relatively <u>how many</u> atoms are in a compound

Rules for Writing Formulas

- 1. Each atom present is represented by its element symbol.
- 2. The number of each type of atom is indicated by a subscript written to the right of the element symbol.
- **3.** When only one atom of a given type is present, the subscript 1 is not written.

3.5 The Structure of the Atom

 In Dalton's time scientists believed elements were made of atoms, and compounds were atoms somehow held together

- but what is an atom?
- why do they stick?
- took nearly 100 years to figure it out!

Thomson's Experiment

- in 1890s JJ Thomson of Cambridge U <u>discovered</u> that all atoms have negative bits called <u>electrons</u>
- <u>if so, must also have</u> <u>positive part...</u>

The Plum Pudding model

- William Thomson (aka Lord Kelvin) modeled the atom as a positive cloud filled with electrons called the <u>Plum Pudding Model</u>
- positive cloud + electrons
 = neutral atom

Rutherford's experiment

- Ernest Rutherford's exp changed the plum pudding model
- he liked <u>shooting</u> <u>"alpha" particles</u> <u>through</u> things to see what would happen
- so he shot some through really <u>thin gold foil</u>...

- to his great surprise, the positive alpha particles didn't all plough right through!
- some were deflected!
- implying there was some positive area in the atom that was deflecting the positive alphas

- this is what should have happened if plum pudding model was correct
- Rutherford said since <u>most made it</u>, but <u>some</u> strongly <u>deflected</u> <u>so</u> that the atom looks like...

- ooooh look! a new player
- This is <u>the nuclear</u>
 <u>atom</u> (one with a nucleus)
- not until 1919 did they figure out the nucleus was made of <u>particles</u>
 <u>called</u> **protons**
- proton had same size but opposite - charge as electron

- Rutherford reasoned that hydrogen has just one proton, one electron buzzing around it
- also reasoned that other atoms just had more protons and electrons
- by 1932, a <u>neutral</u>
 <u>particle the **neutron**</u>
 <u>was discovered in the</u>
 <u>nucleus</u> to complete the
 puzzle

3.6 *Introduction* to the Modern Concept of Atomic Structure

- today's model looks something like this
- ultra-small nucleus
- atom is about 100,000 times bigger than the nucleus!
- like a grain of sand in the middle of the stadium
- the players are...

TABLE 3.4 The Mass and Charge of the Electron, Proton, and Neutron

Particle	Relative Mass*	Relative Charge
electron	1	1 -
proton	1836	1 +
neutron	1839	none
*The electro for comparis	n is arbitrarily ass son.	igned a mass of 1

 Important!!! if all atoms are made of just these three things, why do they all act differently?

It has to do with
 how many there
 are and how they
 are arranged

3.7 Isotopes

- Turns out that <u>Dalton was</u> sorta <u>wrong not</u> <u>all atoms of the same element are alike</u>
- Turns out that although protons and electrons are the same (for any element), but *neutrons* can differ!

- these are **isotopes**
- <u>same p, same e, different n</u>
- number of protons = atomic number
- <u>p + n = mass number</u>
- therefore *isotopes differ by mass number*

X = chemical symbol

- <u>A = mass number</u>
- <u>Z = atomic number</u>
- named by element followed by mass number
- e.g...
- carbon with 6 protons and 8 neutrons is called C-14 (carbon-14) and represented like...

Cuement. Quenenmolis cenebannou na amounaurodie) a Coxod De Menderneta. J:= 50 Zz=90 ?= 180 N6=94 Fa=182 V=SI Mo=96 W= 186 Cr=52 Mn=55 Rh=1044 96=197.4 82=56 Ro= 1044 Ja= 198. Ni= 6=57. R= 105,6 03:199 ?=22 Cu=63.4 My=108 Hy=200 Zn=65,2 G=112 9 = 68 112=116 Na=193. Jn=118 Si=210? Jr=128? Fl= 204 Q=133 Ba= 132 98=202

3.8 Introduction to the Periodic Table

- want a quick reference guide to all the known elements?
- that's the periodic table

 first introduced by Dmitri Mendeleev

		Alkali	ne															Noble gases
	1 1A	earth	metals													Η	aloger	¹⁵ 1 ⁸ 8A
	1 H	2 2A	_										13 3A	14 4A	15 5A	16 6A	17 7A	2 He
	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
	11 Na	12 Mg	3	4	5	6 Tr	7 ansitic	8 n met	9 als	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
metals	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
Alkali	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac†	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
			Lantha	nides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Но	68 Er	69 Tm	70 Yb	71 Lu
			Actinic	les	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

- notice in this simple <u>Periodic Table: ordered by</u> increasing atomic #
- Mendeleev ordered vertical columns by similar properties
- the properties repeat periodically (... periodic table)

1 €	Alkalin earth n	e netals													H	laloger	gases
1A 1 H	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	8A 2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3	4	5	6 Tr	7 ansitic	8 n met	9 als	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac [†]	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
	*[anthai	nides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Fu	64 Gd	65 Th	66 Dv	67 Ho	68 Fr	69 Tm	70 Yb	71 Lu
	†µ	Actinid	es	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Alkali metals

- the <u>vertical groups</u> are called <u>families</u> or simply "groups"
- numbered 1-18, or by A and B groups
- group 1 = alkali metals
- group 2 = alkaline earth metals
- group 17 = halogens
- group 18 = noble gases
- group 3-12 = transition metals
- know them!

Physical Properties of Metals

- 1. Efficient conduction of heat and electricity
- 2. Malleability (they can be hammered into thin sheets)
- 3. Ductility (they can be pulled into wires)
- 4. A lustrous (shiny) appearance
- metals make up most of the Periodic Table
- they can be found here...

A copper kettle and burner from the Bethnal Green Museum in London.

- copper is perfect example
- is very lustrous (<u>shiny</u>)
- easily shaped (malleable)
- can be drawn out into copper wire (ductile)

 but what about things which aren't metal-like?...

- non-metals are called... nonmetals
- they have properties practically <u>opposite of</u> <u>metals</u>
- brittle, dull, nonconductive

Bromine

- some elements have <u>both</u> <u>metal and nonmetal</u> <u>properties</u>
- called <u>metalloids</u> or semimetals
- located on staircase

Silicon

example

Symbol, Atomic number, M/NM, Family

- Argon Ar 18NM noble gas
- Chlorine Cl 17NM halogen
- Barium Ba 56 Malkali earth
- Cesium Cs 55 M alkali

3.9 Natural States of the Elements

Platinum

Neon

- not a whole lot of elements occur alone (i.e. uncombined)
- some metals (noble metals) can be found in their pure, uncombined state
- so do the noble
 gases (group 8)
- but so do...

• **Diatomic** elements!

- these critters travel in twos
- notice they are elements not compounds!
- hydrogen is almost always with another element, but when separated is diatomic

TABLE 3.5

Elements That Exist as Diatomic Molecules in Their Elemental Forms

Element Present	Elemental State at 25 °C	Molecule
hydrogen	colorless gas	H ₂
nitrogen	colorless gas	N ₂
oxygen	pale blue gas	O ₂
fluorine	pale yellow gas	F ₂
chlorine	pale green gas	Cl ₂
bromine	reddish-brown liquid	Br ₂
iodine	lustrous, dark purple solid	l ₂

- here are *diatomic* molecules
- remember: Professor BrINCIHOF
- notice: many are halogens

- the noble gases and the BrINClHOF guys are gases
- only two elements occur as liquids at 25°C
 (bromine and mercury)
- all the rest are solids, which are usually just atoms packed in real tight

- the <u>nonmetals</u> can take on <u>all kinds</u> of arrangements
- different arrangements of same element called <u>allotropes</u>
- allotropes have <u>diff properties</u> because of different arrangements

(c)

3.10 Ions

- <u>Atoms have a zero net charge</u>, i.e. protons = electrons
- But what if you strip an electron off or put an extra one on?
- a charged thing called an ion = "charged"
 atom 11 electrons (11-)
 atom 10 electrons 1 electrons (10-)

Cations and Anions

- When an atom loses an e⁻, we get a positive ion called a Cation
- lose one e⁻, get a 1+ charge; lose two e⁻, get a 2+ charge
- The <u>ion is named</u> <u>after parent atom</u>
- <u>e.g.</u> <u>aluminum ion</u>, magnesium ion

- What if it gains an electron? anion
- The <u>name</u>, however, changes! <u>adds</u> an <u>-ide to the</u> <u>end (e.g. chloride)</u>
- III ions only formed by changing electrons, not protons
- III never happens alone; something always makes them fall off or add on

Two types of Ions

 Positive ion (cation) Negative ion (anion)

Ion charges and the Periodic Table

- want an easy way to remember these charges?
- <u>metals lose e⁻ (form cations)</u> <u>nonmetals gain e⁻ (form anions)</u>
- see the pattern? know the pattern! ;)

3.11 Compounds that contain Ions

- Evidence that compounds contain ions?
- When melted down salt will conduct electricity, but not in the solid state
- hmmm...

- Also lights the light when it is dissolved in water
- Electricity only flows if there are charged things allowing electrons to flow

 Conclusion? Salt must be made of positive and negative particles held together tightly

- These <u>compounds made of ions</u> are called <u>ionic</u>
 <u>compounds</u>
- When putting these together we must remember that <u>overall their charges will cancel out</u>
- i.e. total positive charge = total negative charge
- So! When you write <u>formulas</u> for these remember to <u>have cations AND anions</u>, and make sure there are enough so + = -

Calcium & Chlorine Ca Cl Ca²⁺ Cl⁻ You need two Cl for every Ca Therefore, CaCl₂

Magnesium & Oxygen Mg O Mg²⁺ O²⁻ One to one, therefore MgO

Aluminum & Bromine Al³⁺ Br⁻ AlBr₃

Sodium & Sulfur Na⁺ S²⁻ Na₂S