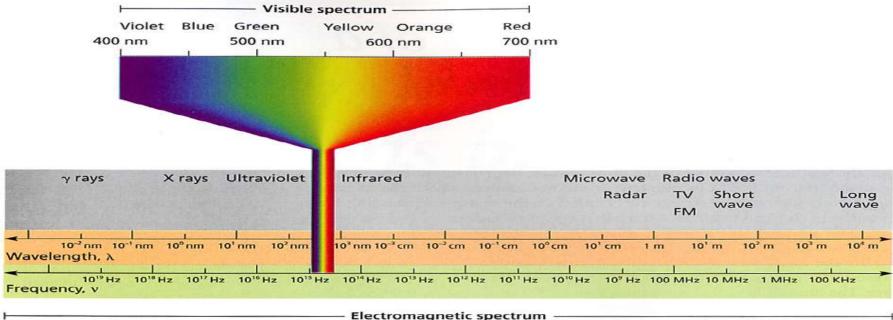

Atomic Structure and Periodicity

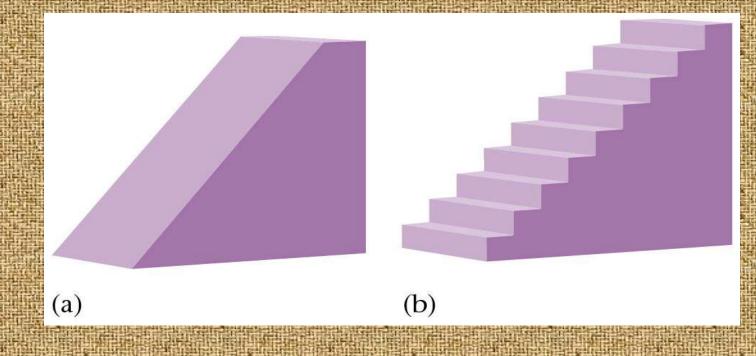
Electromagnetic Radiation


- Energy that travels through space in the form of waves. (simplified definition)
- <u>Wavelength</u> (λ)- distance between 2 peaks
 <u>Frequency</u> (v)- # of waves that pass a point per second
- <u>Speed</u> EM Radiation travels at speed of light

EM Spectrum

- Which wavelength has the greatest energy?
- Which has the least energy?
- How are wavelength and energy related?

How are frequency and wavelength related?


More About This Stuff

- Inverse relationship between frequency and wavelength.
- $c = \lambda v$
 - λ = metersc = 3.0 x 10⁸ m/s
 - $v = cycles = 1/sec = sec^{-1} = hertz (Hz)$
- 1. What is the wavelength of light with a frequency 5.89 x 10⁵ Hz?
- 2. What is the frequency of blue light with a wavelength of 484 nm?

Planck and Quatized Energy

- Found that energy is quantized.
- Matter can only absorb or emit certain quantities of energy.
- Like stairs as opposed to a ramp.

More Planck

- Determined a formula for the energy of a quantum (packet of quantized energy) and a constant that has his name (awesome).
- $\Delta E = hvor \Delta E = hc/\lambda$
 - v = frequency of EM radiation
 - H = Planck's constant = $6.63 \times 10-34 \text{ J} \cdot \text{s}$
- Calculate the quantum (increment of energy) emitted at a wavelength of 520nm.
- 2. What wavelength of light is capable of emitting a quantum of 4.41 x 10-19 J?

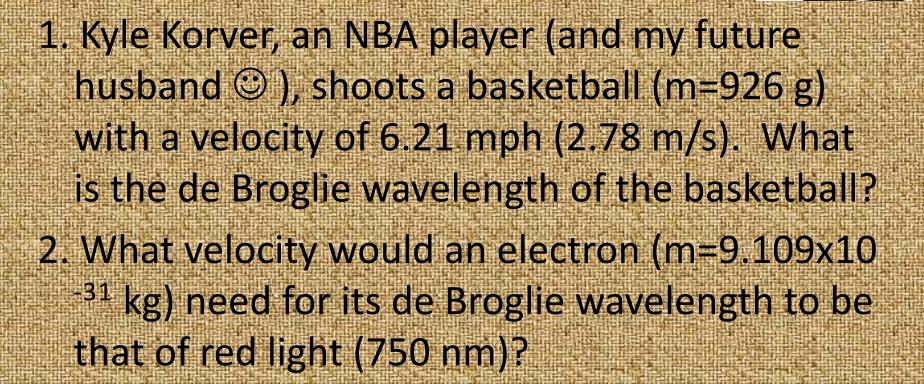
Einstein EM Radiation is Quantized

- Planck said energy is quantized.
- Einstein hypothesized EM radiation is quantized.
- EM Radiation is now seen as traveling as waves AND a stream of particles (called photons).
- Energy of each photon is given by the equation:
- $E_{photon} = hv = hc/\lambda$

Calculating Energy of Photons

34. What is the energy of a single UV photon and a mole of UV photons having a wavelength of 25nm?

40. It takes 208.4 kJ of energy to remove 1 mole of electrons from the surface of rubidium metal. How much E to remove a single electron? What is the maximum wavelength capable of doing this?

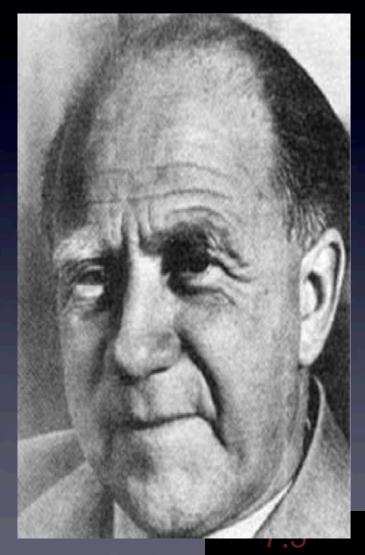

HW: 33-39 odd

De Broglie's Equation

- Now able to calculate the λ of a particle.
- Knowing E=hc/λand E=mc²
- Then $mc^2 = hc/\lambda$
- Som = h/λc
- But a particles speed is not the speed of light
- Som = $h/\lambda v$
- Thereforeλ = h/mv

Note: Here v = speed of particle in m/s m = mass of particle in kg

De Broglie Equation



Diamagnetism & Paramagnetism

- diamagnetic just means all e- are paired up
- paramagnetic means there is a loner in there somewhere
- paramagnetic atom (and molecules) are strongly affected by magnetic fields; not too much for diamagnetic

The Heisenberg Uncertainty Principle

- Werner H came along and said we can't know both the position and the momentum of an electron
- meaning: we can't know that the electrons go around like little planets; we can just know probably where it is

- all this, and the important work of Schrödinger, taught us to treat the electron as a wave
- this idea revolutionized the field
- this is how we see the atom now...

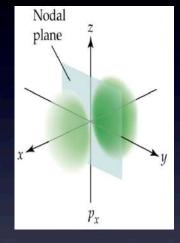
Quantum Numbers

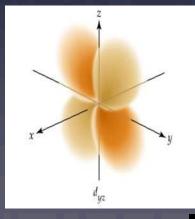
- the positions of electrons with respect to the nucleus are described by quantum numbers
- each electron has four QN to narrow down where it *might* be
- like four bits of an address to help specify
- shell, subshell, orbital, spin...

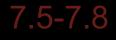
• shells: n = 1, 2, 3...

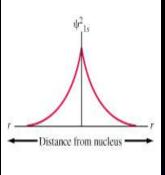
- "n" is called the *principal quantum number*
- almost always tells us average distance from nucleus (higher numbers indicate greater distance)
- also tell us *relative energy* (higher numbers indicate higher energy, less stability)

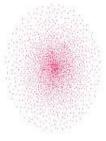
• subshells: ℓ = 0, 1, 2...

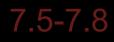

- aka angular momentum number
- this second QN tells us the shape of the electron's orbital..

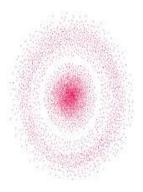

- first shell (n=1) has just one subshell:
 s (l=0)
- second shell (n=2) has two subshells:
 s (l=0) and p (l=1)
- third shell (n=3) has three subshells:
 s (l=0), p (l=1), and d (l=2)
- see a number pattern?
 - ℓ will always be from 0 to (n-1)

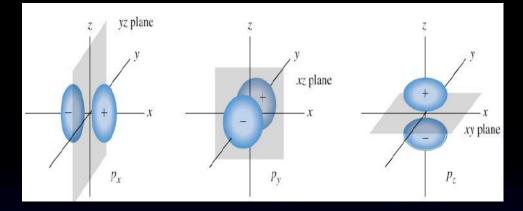


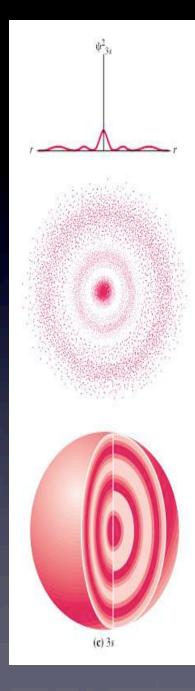


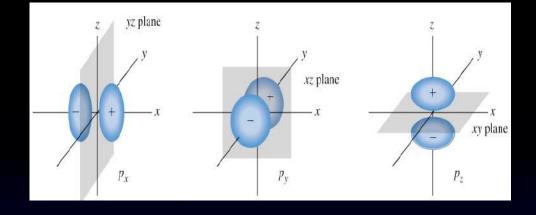

- the shapes are:
- *s* = *spherical*
- *p* = *dumbbell* shaped
- *d* = *cloverleaf*



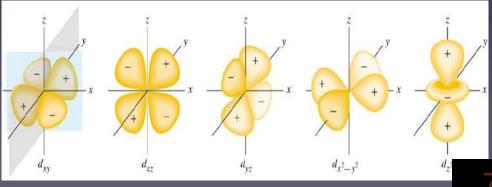



at the first level there is just this one orbital (1s)



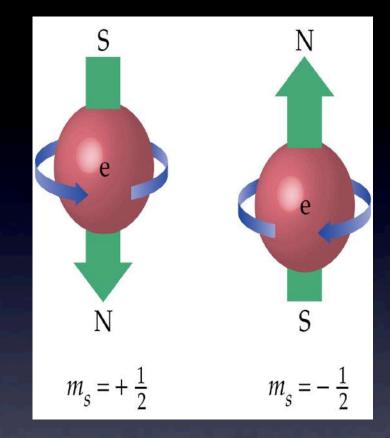


at level two there are the one 2s and three 2p's

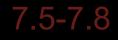


 at the level 3 there are one 3s, three 3p's and five 3d's

see another pattern yet?


^d^z 7.5-

- orbitals: m_ℓ = ... -1, 0, +1...
- this is called the magnetic quantum number, or orbital, and describes
 orientation in space
- where is orbital on the x, y, z axes? m_l
 can tell you
- for now..


- the s subshell (l=0) being spherical, can only be placed in one orientation: m_l=0
- the p subshell (l=1) has three different ways it can be placed: m_l=-1, m_l=0, m_l=+1
- the d subshell (l=2) has 5 different ways to be placed in space: m_l = -2, -1, 0, +1, +2
- m at any level will have the value to +to

 each orbital we've seen so far can house two electrons, one spinning one way, one the other way

• spin: $m_s = +1/2$ or -1/2

TABLE 5.2

Allowed Combinations of Quantum Numbers n, l, and m_l for the First Four Shells

n	1	m_l	Orbital Notation	Number of Orbitals in Subshell	Number of Orbitals in Shell		
1	0	0	1 <i>s</i>	1	1		
2	0	0	2 <i>s</i>	1	ä		
2	1	-1, 0, +1	2p	3	4		
	0	0	3 <i>s</i>	1			
3	1	-1, 0, +1	Зр	3	9		
	2	-2, -1, 0, +1, +2	3 <i>d</i>	5			
	0	0	4s	1			
	1	-1, 0, +1	4p	3			
4	2	-2, -1, 0, +1, +2	4d	5	16		
	3	-3, -2, -1, 0, +1, +2, +3	4f	7			

- now we describe the electrons in a given element using all this QN junk
- be patient; it is really much easier than it first appears
- but first: gotta know a couple rules...

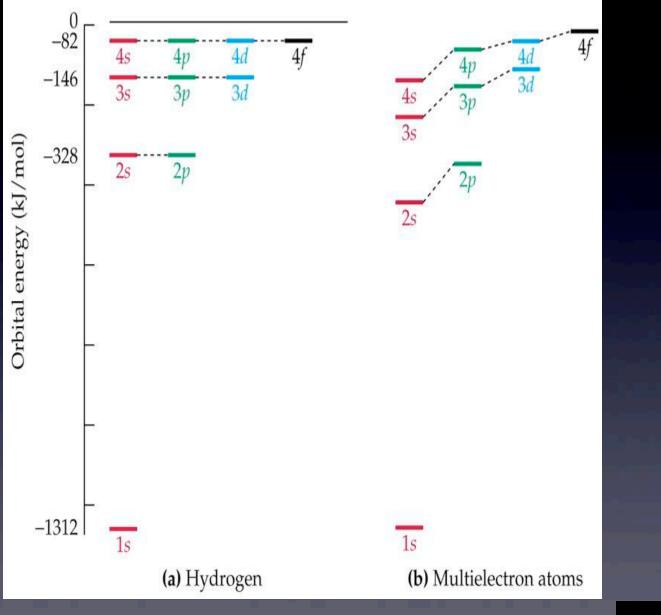
The Aufbau Principle

- aufbau from the German "to build up"
- when seeing how electrons are "configured" in an atom we have to start from the bottom and work the way up, low energy to hi energy

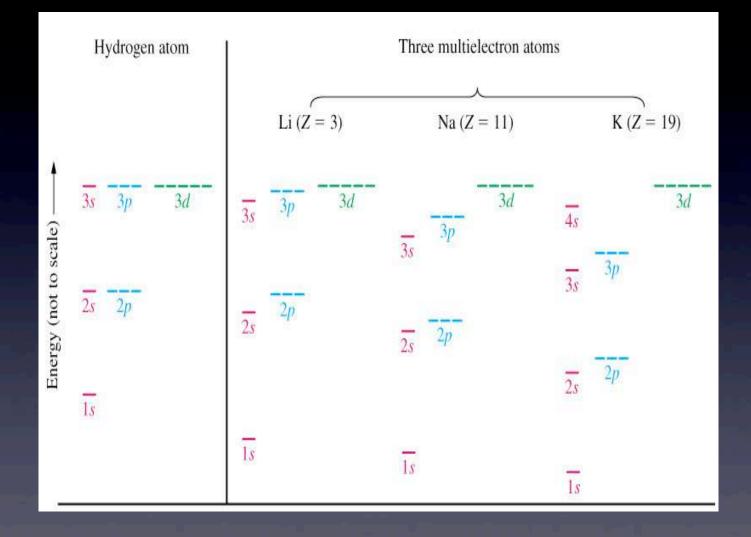
The Pauli Exclusion Principle

- no two electrons can occupy the exact same orbital, so...
- every electron has it own unique set of 4 QNs

QN and the PT


- using the PT to tell QN is profoundly important and easy!
- the first two QNs (e.g. 3s) can be seen here....

	Main-group elements																	
s block										1				L		18		
						p block												
H 2	8										13	14	15	16	17	He		
$\frac{3}{(2s)}$ 4											5	6	7	8 (p)	9	10		
Li Be		Transition elements											N	0	F	Ne		
11 12	-	d block											15	p p p p p p p p p p	17	18		
Na Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar		
19 20 (4s)	21	22	23	24	25	$\binom{26}{d}$	27	28	29	30	31	32	33	34 p)	35	36		
K Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
37 38	39	40	41	42	43	44 d)	45	46	47	48	49	50	51	52 p)	53	54		
Rb Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe		
55 56 (6s)	57	72	73	74	75	76	77	78	79	80	81	82	83	84 p)	85	86		
Cs Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn		
87 88	89	104	105	106	107	108	109	110	111	112	1		17	1000				
Fr Ra	Ac†	Rf	Db	-6d Sg	Bh	Hs	Mt											


	0					Inner-	transit	ion ele	ements					
	<u> </u>						f b	lock			0			
8	58	59	60	61	62	63	64	L 65	66	67	68	69	70	71
2	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тъ	Dy	Но	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	1.97 5f)	98	99	100	101	102	103
8	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

7.11

- you can also see the Aufbau Principle when reading it left to right
- notice what happens to the filling order once you get past 3p... does it go to 3d?

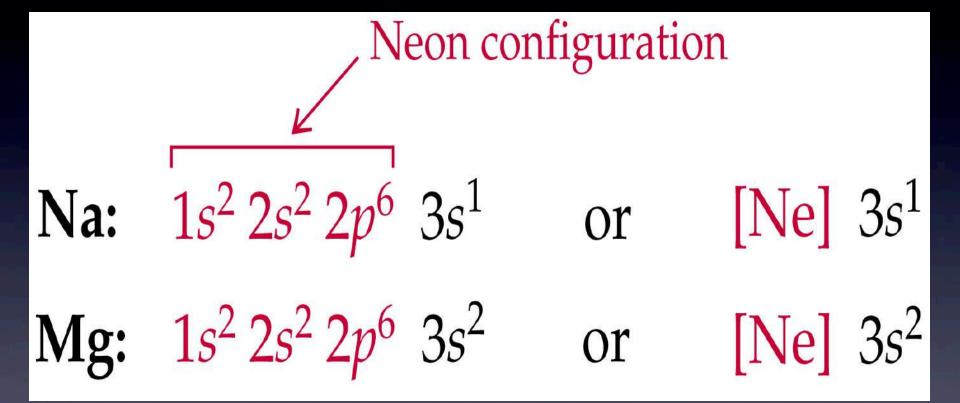
7.11

eocs

• 7.57-60

Hund's Rule

 the rule says that if you add an electron to a subshell it will go into one that is empty and only "pair up" if it has to

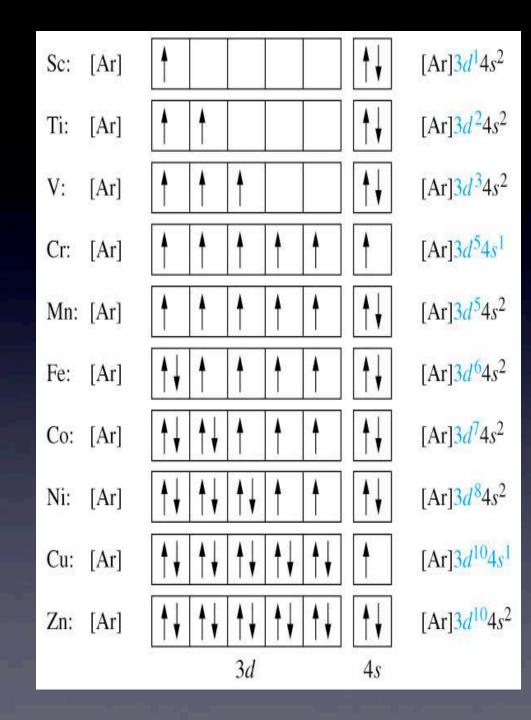


Electron Configurations

- putting all these rules together we can see the way the electrons are configured around any element on the PT
- watch how I do it...
- now use the PT to do any electron configuration

B: $1s^2 2s^2 2p^1$	or	$\frac{1}{1s}$	$\frac{1}{2s}$	$\frac{\uparrow}{2p}$ —
C: $1s^2 2s^2 2p_x^{-1} 2p_y^{-1}$	or	$\frac{1}{1s}$	$\frac{1}{2s}$	$\frac{\uparrow}{2p}$ —
N: $1s^2 2s^2 2p_x^{-1} 2p_y^{-1} 2p_z^{-1}$	or	$\frac{1}{1s}$	$\frac{1}{2s}$	$\frac{\uparrow}{2p} \frac{\uparrow}{2}$

0:	$1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$	or	$\frac{1}{1s}$	$\frac{1}{2s}$	↓ ↑	$\frac{\uparrow}{2p}$	<u> </u>
F:	$1s^2 2s^2 2p^5$	or	$\frac{1}{1s}$	$\frac{1}{2s}$	↓↑	$\frac{1}{2p}$	<u>↑</u>
Ne:	$1s^2 2s^2 2p^6$	or	$\frac{1}{1s}$	$\frac{1}{2s}$	$\downarrow\uparrow$	$\frac{1}{2p}$	<u>↓</u> ↑



Begin here →	1 <i>s</i>	s	5	15	
	2 <i>s</i>			2p	
	3s			3p	
	4s	3d		4 <i>p</i>	
	5s	4d		5p	
	6 <i>s</i>	5 <i>d</i>		6p	
	7s	6 <i>d</i>	7p	→	
				_	
		4	4f		
			ōf		
sl	olock	<i>p</i> block	d block	f block	

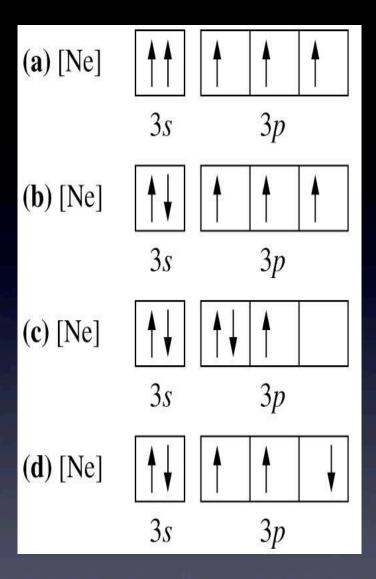

7.11

TABLE 9.2 Electron Configurations of Some Groups of Elements

Group	Element	Configuration
1	Н	$1s^{1}$
	Li	$[He]2s^1$
	Na	$[Ne]3s^1$
	К	$[Ar]4s^1$
	Rb	$[Kr]5s^1$
	Cs	$[Xe]6s^1$
	Fr	$[Rn]7s^1$
17	F	$[\text{He}]2s^22p^5$
	Cl	$[Ne]3s^23p^5$
	Br	$[Ar]3d^{10}4s^24p^5$
	Ι	$[Kr]4d^{10}5s^25p^5$
	At	$[Xe]4f^{14}5d^{10}6s^{2}6p^{5}$
18	He	$1s^2$
	Ne	[He] $2s^2 2p^6$
	Ar	$[Ne]3s^23p^6$
	Kr	$[Ar]3d^{10}4s^24p^6$
	Xe	$[Kr]4d^{10}5s^25p^6$
	Rn	$[Xe]4f^{14}5d^{10}6s^{2}6p^{6}$

• which of these is correct?

example

• sample exercise 7.7 (326)

eocs

- 7.69-72
- 7.75, 76, 80

Periodic Trends

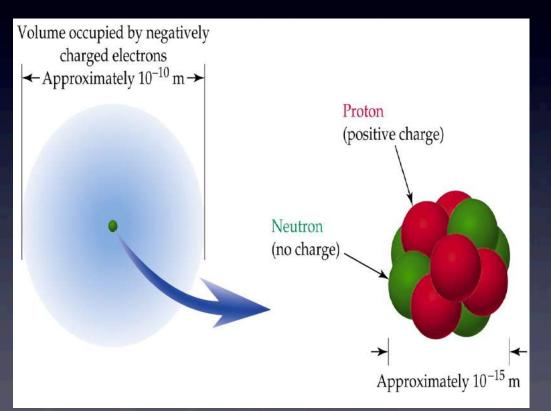
- using the PT can show you how atoms might act
- understand these basic rules and you'll go far...

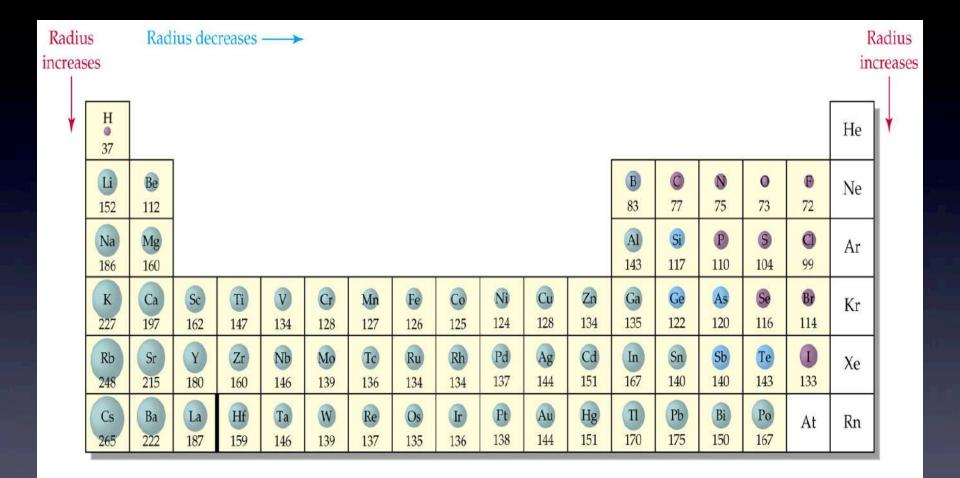
- Electrons are attracted to the protons in the nucleus of an atom.
 - the closer they are the more they are attracted
 - the more protons, the more attraction

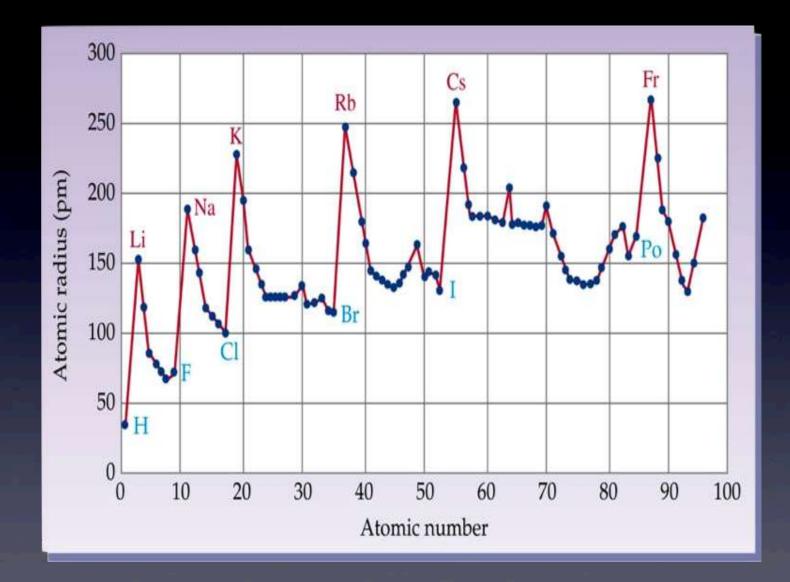
Electrons are repelled by each other

- important b/c if there are outside electrons, they are prevented from being attracted by the inside electrons
- called shielding

Completed shells are a good thing.


 so if shells are incomplete they will lose or steal or share to get complete


- metals are on the left side of the PT
 - they like to lose e-
 - they make up the majority of the PT


- **nonmetals** are on the right side
 - they tend to gain e- to form bonds
- metalloids are on the border b/t the two
 - they have properties of both metals and nonmetals

Atomic Radius

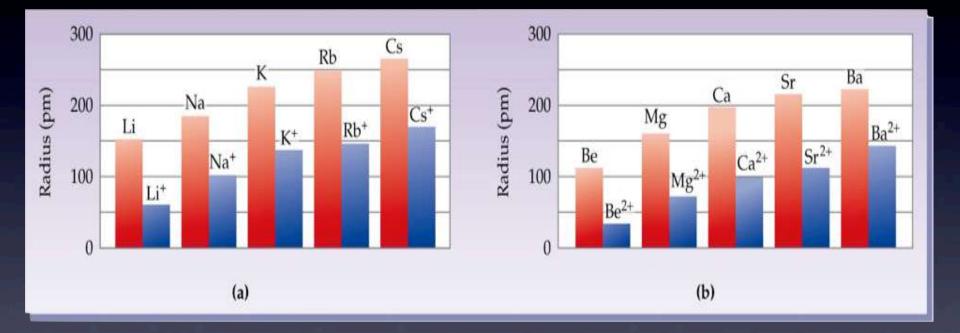
- the atomic radius is roughly the distance b/t nucleus and edge of cloud
- here are some things you should know...

- moving left to right we see the atoms getting smaller
- more protons mean a greater pull
- and although more e-, they are being added to same shell, so not much shielding from nucleus

moving down a group, atoms get bigger

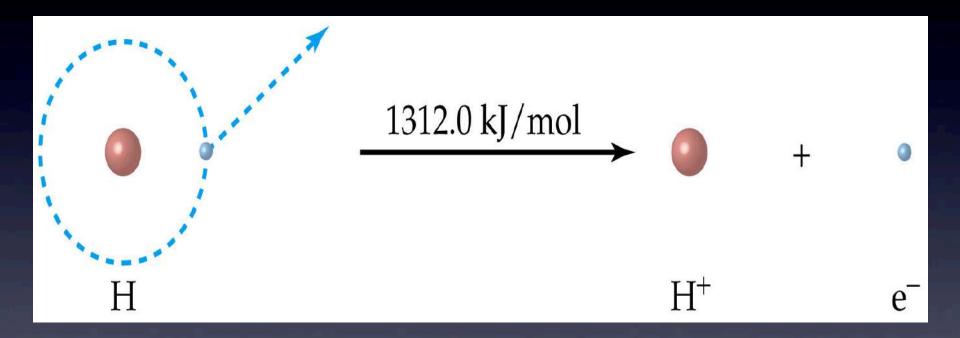
- a whole new shell is being added here so shielding really kicks in
- the greater p number is not able to whoop shielding
- now look at the ion size relationship (after this film)...

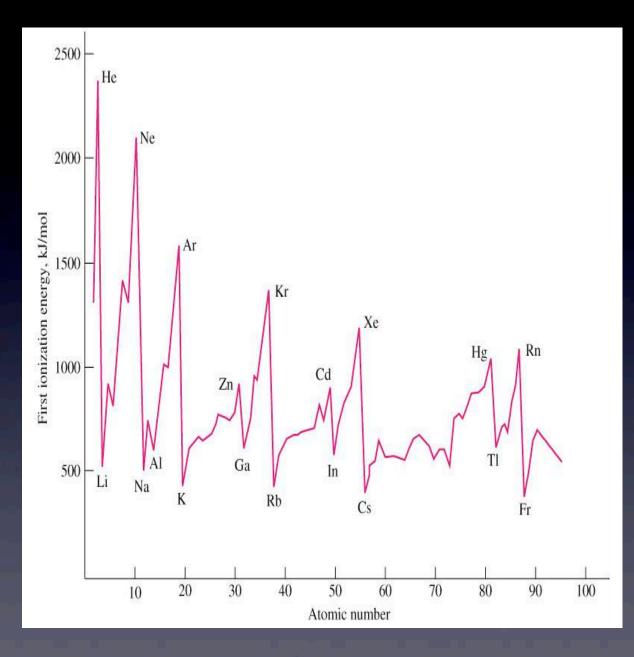
Li ⁺ 59	Be 111 Be ²⁺ • 27											B © 88	C 0 77	N 75 N ³ 171	0 0 73 0 2 140	F 0 71 E 133
Na ⁺ 99	Mg 160 Mg ²⁺ 72											(A) 143 A1 ³⁺ 0 53	Si 117	(P) 110 (P ³⁻) 212	S 104 S ² 184	C) 99
К 227 К ⁺ 138	Ca 197 Ca ²⁺ 100	Sc ³⁺ 75	(1) 145 Ti ²⁺ 86	V 132 V ²⁺ 9 79 V ³⁺ 64	() 125 Cr ²⁺ 82 Cr ³⁺ 62	Mn 124 Mn ²⁺ 83	Fe ²⁺ 77 Fe ³⁺ 65	Co ²⁺ 75 Co ³⁺ 61	Ni ²⁺ 70	Cu ⁺ 96 Cu ²⁺ 73	Zn 133 Zn ²⁺ 0 75	Ga ³⁺ 62	Ge 122	AS 121	Se 117 Se ² 198	8) 114 8r 196
Rb 248 Rb ⁺ 149	Sr 215 Sr ²⁺ 113									Ag ⁺ 115	Cd 149 Cd ²⁺ 95	(in) 163 In ³⁺ 9 79	Sn 141 Sn ²⁺ 93	Sb 140 Sb ³⁺ 0 76	Te ² 221	1 133 1 220



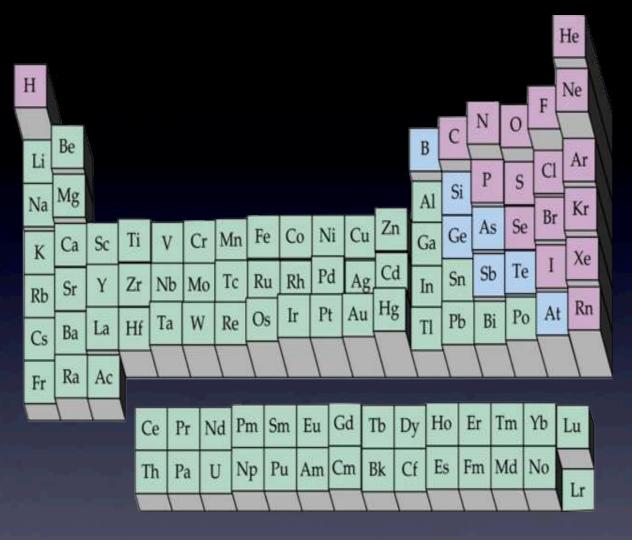
- cations are smaller than their atoms
- when making positive ions, usually the whole valence shell falls off
- result is smaller

- anions are larger than their atoms
- adding e- increases the e-/erepulsion so it gets bigger

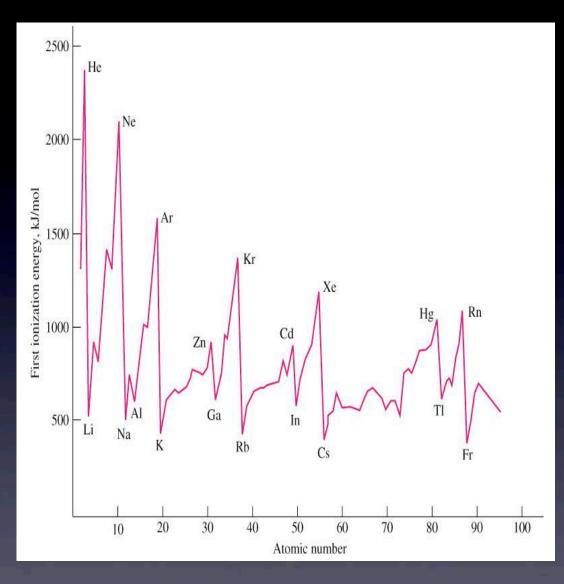



eocs

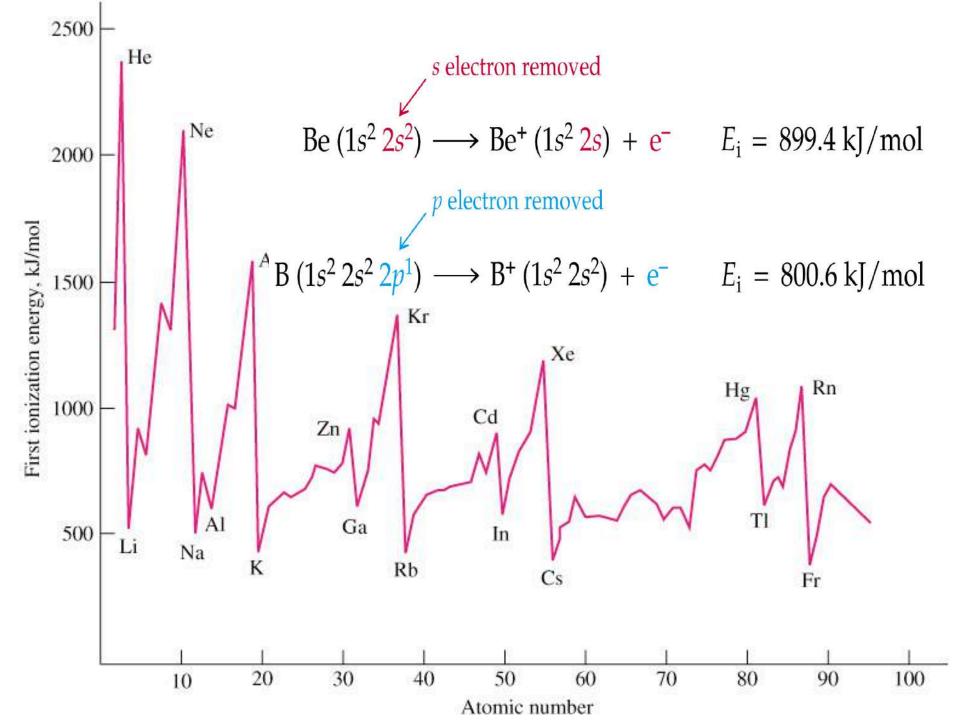
• 7.85, 86, 89, 90


Ionization Energy

- knocking an e- off will cost you
- the amt of E needed to knock off the most loosely held e- is called first ionization energy
- knocking another one off that new cation is called second ionization energy...



7.12



- this shows relative ionization energy
- which side doesn't like losing electrons?

- IE increases going left to right
- as you go to the right, we get more protons
- more p's hold on more tightly to the e-'s
- so it's tougher to take them off
- so the IE increases

why there are valleys along the way?

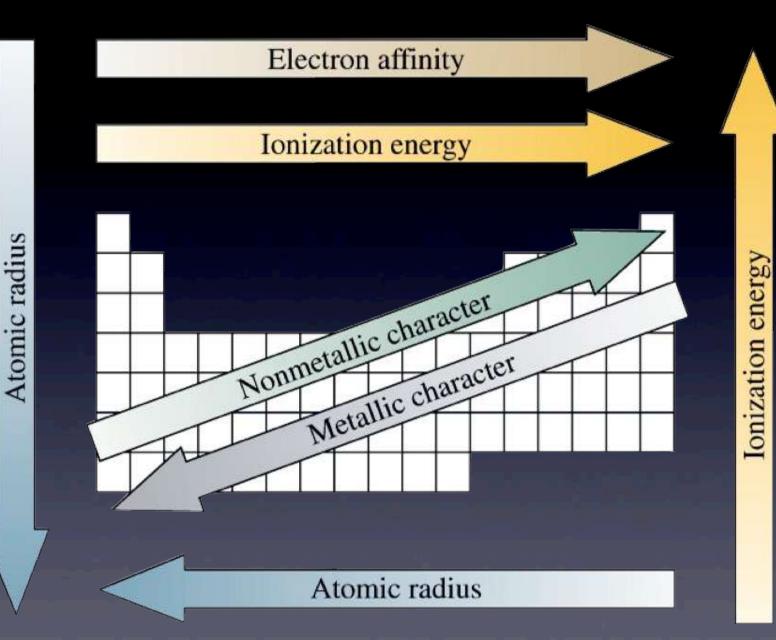
- why the mini valley between O and N?
- N charges more b/c it is halffilled; O gets to be half-filled so charges less
- why the decrease from He to Ne?...

- IE decreases going down a group
- each row down adds a shell
- the shells shield the valence e-'s
- therefore easier to knock off
- (more protons? true, but not enough to cancel shielding)

TABLE 10.4 Ionization Energies of the Third-Period Elements (in kJ/mol)

	Na	Mg	Al	Si	Р	S	Cl	Ar
I_1	495.8	737.7	577.6	786.5	1012	999.6	1251.1	1520.5
I_2	4562	1451	1817	1577	1903	2251	2297	2666
I_3		7733	2745	3232	2912	3361	3822	3931
I_4			11580	4356	4957	4564	5158	5771
I_5				16090	6274	7013	6542	7238
I_6					21270	8496	9362	8781
I_7						27110	11020	12000

see any patterns???

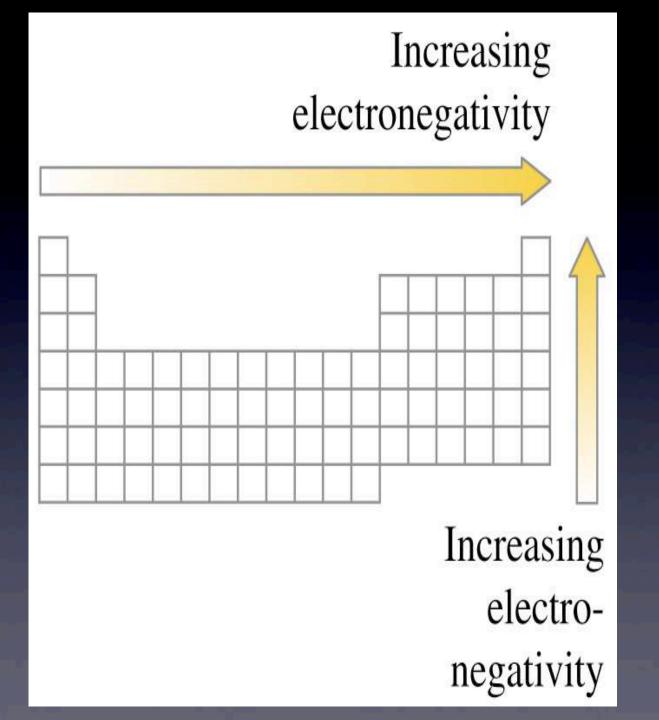

- 2nd IE is greater than the 1st IE
- take an e- away and there is less e-/erepulsion and the remaining e-'s will move in tighter
- and trying to take an e- from a cation is a pain

- remove enough e-s and ba-da-bing! suddenly it becomes almost impossible
- removing e-'s gets tougher until you lose a whole shell, then it ain't happening
- for Na, the 1st EZ, 2nd fuggedaboutit
- for Mg, 1st and 2nd EZ, 3rd, no way
- etc.

Electron Affinity

- throw an e- onto an element
- if energy is given off, it is more stable
- if energy is needed to keep it there, it is less stable
- details not easy; just pretend it is the love an element has for electrons

1	12						18
H -72.8	2	13	14	15	16	17	He
Li	Be	B	C	N	0	F	Ne
-59.6		-26.7	-153.9	-7	-141.0	-328.0	
Na	Mg	Al	Si	P	S	Cl	Ar
- 52.9		-42.5	-133.6	-72	-200.4	-349.0	
K	Ca	Ga	Ge	As	Se	Br	Kr
-48.4		28.9	-119.0	78	-195.0	-324.6	
Rb	Sr	In	Sn	Sb	Te	I	Xe
-46.9		28.9	-107.3	-103.2	- 190.2	295.2	
Cs	Ba	Tl	Pb	Bi	Po	At	Rn
-45.5		-19.2	-35.1	-91.2	- 186	-270	


Electron affinity

Electronegativity

- really important this one
- when atoms share electrons how badly does this guy want them? = en
- F rules here
- the closer you get to F the more en it is...

1	8															
H 2.1	2	201	be	elow 1	.0		2.0-2.4						14	15	16	17
Li 1.0	Be 1.5	1.0-1.4					2.5-2.9						C 2.5	N 3.0	0 3.5	F 4.0
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	Al 1.5	Si 1.8	Р 2.1	S 2.5	Cl 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Тс 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.8	Ba 0.9	La* 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac [†] 1.1	1	nthani tinides		.1–1.3 -1.5										

eocs

• 7.87, 88, 121-123