CHAPTER 2

AP Chemistry

Law of Conservation of Mass

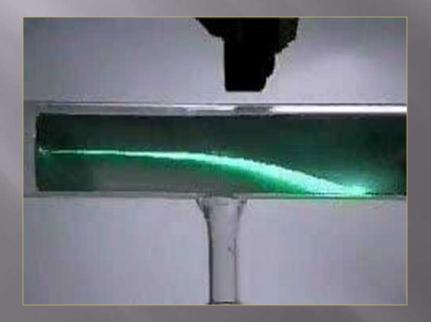
Law of Definite Proportions (constant comp)

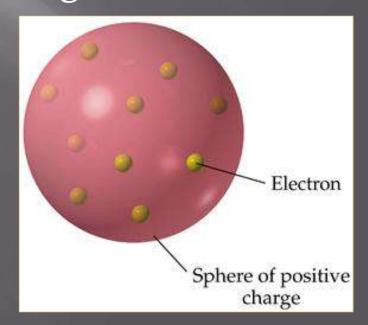
Law of Multiple Proportions: ratios of masses can always be reduced to small whole #s.
 CO = 1 g C combines with 1.33g O
 CO₂ = 1 g C combines with 2.66g O

Dalton's Atomic Theory 1

All elements are composed of tiny indivisible particles called atoms.

Atoms of the same element are identical.

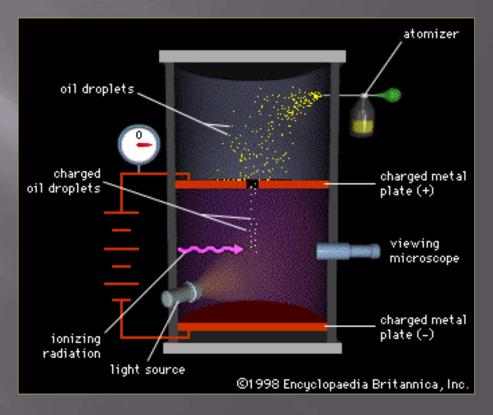



Dalton's Atomic Theory 2

Atoms of different elements can combine with one another in whole number ratios to form molecules. Chemical reactions occur when atoms are separated, joined, or rearranged.

J.J.Thomson

Found the existence of negatively charged particles in atoms.
 Called these particles <u>electrons</u>.
 Designed the Plum Pudding Model



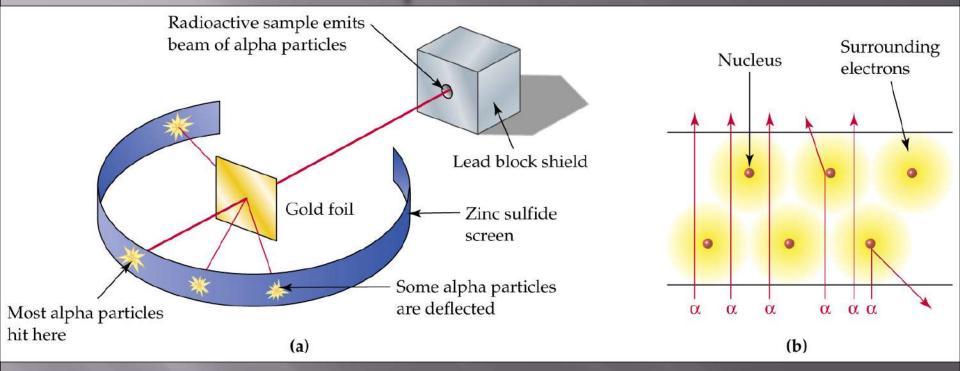
Robert Millikan

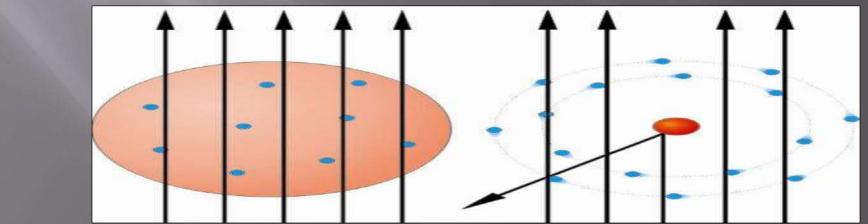
Used charged oil droplets to find the mass of an electron.

9.11 x 10-31 kilograms

Radioactivity

• Alpha: Positively charged helium nucleus Beta High energy electron Gamma High energy ray/light


Ernest Rutherford


Designed an experiment to test Thomson's Plum Pudding Model.

Shot alpha radiation at gold foil.
 If Thomson is right, alpha particles will pass straight thru.

What do you think he found?

Rutherford's Gold Foil Experiment

Nucleus

• The nucleus is a very dense cluster of protons and neutrons that takes up very little space but accounts for over 99% of the mass of an atom. The nucleus is held together by the strong nuclear force.

 Protons are positively charged particles found in the nucleus.
 The mass of a proton is about

1 atomic mass unit (amu).

Neutrons are neutral particles found in the nucleus.
 They shield the protons from one another to serve as a buffer.
 The mass of a neutron is about 1 amu.

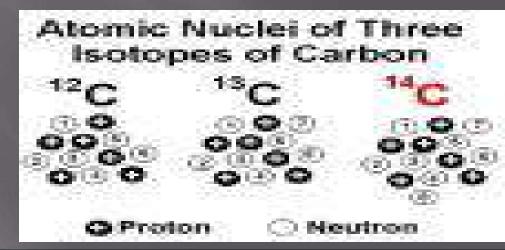
Electrons

Electrons are negatively charged particles found moving at different distances from the nucleus. The mass of an electron is

only about 0.000545 amu.

Atomic Number (Z)

The number of protons found in atoms of a particular element are unique and specific for that element.


The atomic number is the number of protons found in the nucleus of an atom.

Atomic Number 2

The number of protons identifies the type of atom. The atomic number also indicates the number of electrons found in the atom when it is neutral.

Atoms that have the same number of protons but different numbers of neutrons are called isotopes.

Mass Number (A)

The sum of the protons and neutrons in an atom is called the mass number.

Carbon 12

Carbon 13

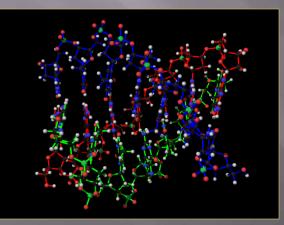
Chemical Bonds Preview

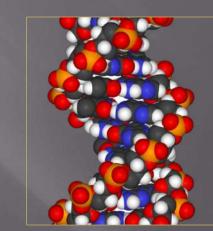
The forces that hold atoms together in compounds are called <u>Chemical Bonds</u>.

Covalent Bonds: Atoms share electrons

Molecule: Collection of atoms held together with covalent bonds. (sharing e-)

Representing Molecules


Chemical Formula: Simplest and least useful
 H₂OCO₂CH₄


Structural Formula: Shows the bonds

□ H-O-H O=C=O

Space-Filling Model: 3D

Ball-and-Stick Model: 3D

Methane (Ball and stick Model)

lon

An ion is an atom that has gained or lost one or more electrons in order to obtain the octet.
 There is no longer a balance

between electrons and protons, leaving a charge.

More About Ions

Anions

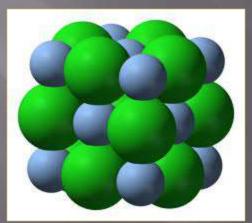
Atoms gain electrons and become negatively charged.

Cations

Atoms lose electrons and become positively charged.

How Many Electrons Are There?

#protons - #electrons = charge OR
#protons - charge = # electrons
Example:


Al+3
Br-1
Ca+2

Ionic Bonds

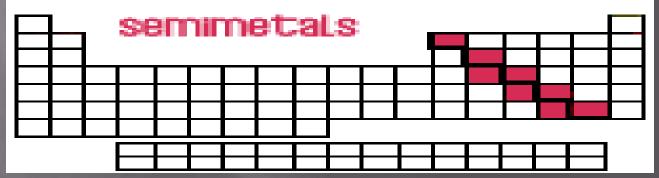
Ionic Bond: bond formed due to the transfer of electrons from one or more atoms to one or more atoms.

Since they have opposite charges, anions and cations are attracted to each other.

Ionic Solid (Salt): Collection of oppositely charged ions.

Periodic Table

The periodic table is an arrangement of the elements according to atomic number and similarities in their properties.


Period / Group (Family) The 7 horizontal rows of the periodic table are called periods. The 18 vertical columns of the periodic table are called groups or families.

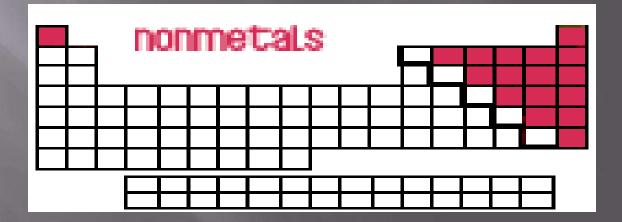
Periodic Table Regions

The periodic table is divided into 3 main regions: Metals on the left. Semimetals or metalloids. Non-metals on the right.

Semimetals (Metalloids)

The elements to the immediate right and left of the heavy stepped line except for aluminum are the semimetals.

Semimetal Characteristics


Semimetals have properties that are intermediate between metals and nonmetals.

Metals

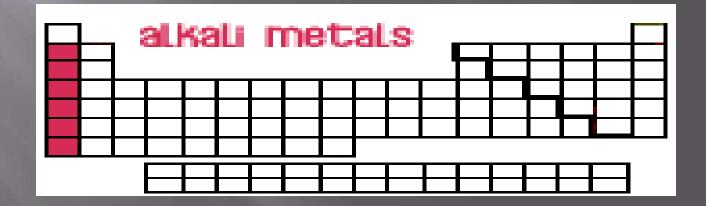
The elements to the left of the semimetals and at the bottom of the table are called **metals**. Metals are good conductors, shiny, malleable (can be hammered into sheets), and ductile (can be pulled into wires).

Non Metals

The elements to the right of the semimetals and hydrogen are the non metals.

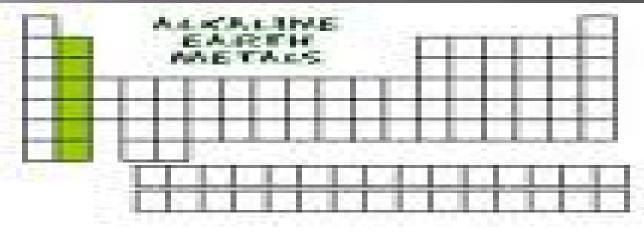
Valence Electrons

The group number indicates the number of electrons that are able to participate in a chemical bond.

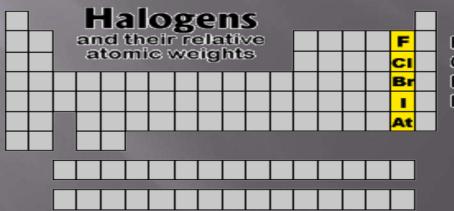

These outer electrons are called the valence electrons.

All atoms want to have 8 valence electrons.
 This octet is responsible for making atoms stable.

Alkali Metals

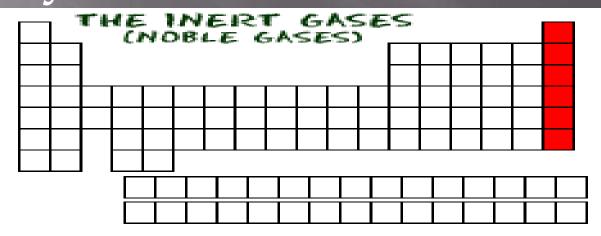

 The alkali metals are found in group one of the metals.
 The alkali metals are extremely reactive.

Alkaline Earth Metals

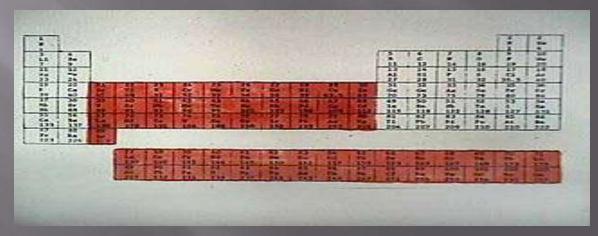

The alkaline earth metals are found in group 2.

They are not quite as reactive as the alkali metals.

Halogens


The halogens are group 17 in the non metal portion of the periodic table. These elements are very reactive.

Fluorine 18.99 Chlorine 35.45 Bromine 79.90 Iodine '126.70

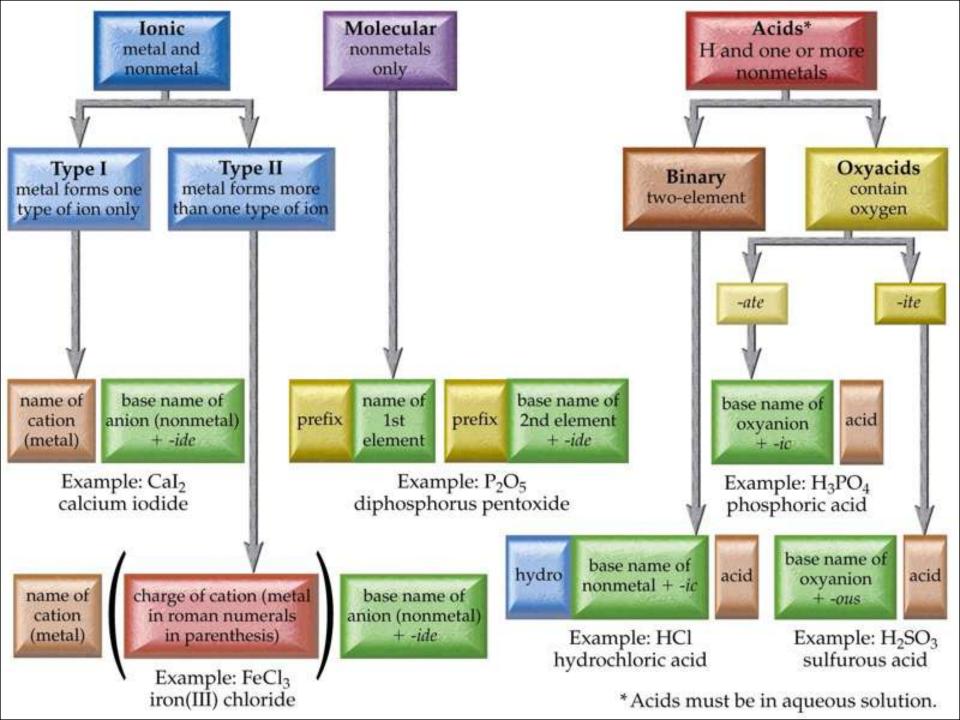

Noble Gases

The noble gases are group 18 in the non metal portion of the periodic table. They are largely non reactive.

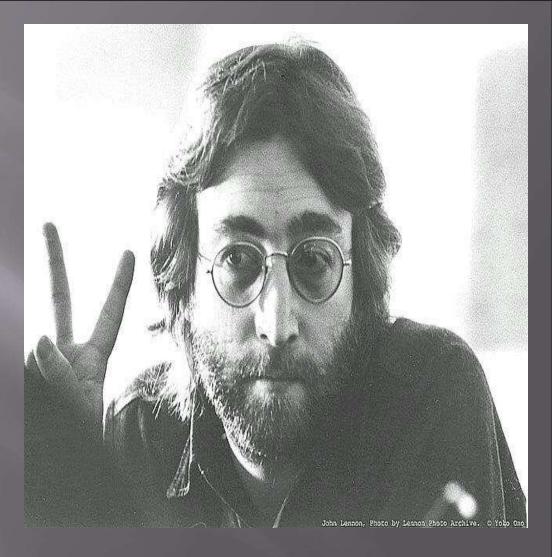
Transition Metals

The transition metals include groups 3 through 12 as well as the lanthanides and actinides.

Diatomic Gases or Molecules


Elemental forms that are made up of two molecules bonded together.

HOFBrINCl Triple 7's At FON Home


Noble Gases are always atomic gases.

Chapter Questions/Homework

#44, 46, 47, 50, 54

Binary Compound A compound made of **two** elements <u>2 Types</u> Metal and Nonmetal 2 Nonmetals

Don't Forget

- Metals tend to lose electrons and become positively charged ions.
- Nonmetals tend to gain electrons and become negatively charged ions.
 These bond together to form binary ionic compounds.

TABLE 4.1

Common Simple Cations and Anions

Cation	Name	Anion	Name*
H ⁺	hydrogen	H_	hydride
Li ⁺	lithium	F ⁻	fluoride
Na ⁺	sodium	CI-	chloride
K ⁺	potassium	Br ⁻	bromide
Cs ⁺	cesium	1-	iodide
Be ²⁺	beryllium	0 ²⁻	oxide
Mg^{2+}	magnesium	S ²⁻	sulfide
Ca ²⁺	calcium		
Ba ²⁺	barium		
Al ³⁺	aluminum		
Ag ⁺	silver		

*The root is given in color.

TABLE 4.2 **Common Type II Cations Systematic Name** lon Fe³⁺ iron(III) $\rm Fe^{2+}$ iron(II) Cu^{2+} copper(II) Cu^+ copper(l) Co³⁺ cobalt(III) Co^{2+} cobalt(II) Sn⁴⁺ tin(IV) Sn²⁺ tin(II) Pb^{4+} lead(IV) Pb^{2+} lead(II) Hg²⁺ mercury(II)

 $\text{Hg}_2^{2+\star}$

*Mercury(I) ions always occur bound together in pairs

mercury(I)

You Try It!

CsF

AlCl₃

MgI₂

Rb₂O

You Try It!

CsF *cesium fluoride*AlCl₃ *aluminum chloride*MgI₂ *magnesium iodide*

Rb₂O

rubidium oxide

Type II Binary Ionic Compounds

 Some cations can form more than one charge
 Type II
 Ex: iron can form 2+ and 3+ ions

 We use roman numerals to distinguish between the ions

TABLE 4.2

Common Type II Cations

lon	Systematic Name	Older Name
Fe ³⁺	iron(III)	ferric
Fe ²⁺	iron(II)	ferrous
Cu ²⁺	copper(II)	cupric
Cu ⁺	copper(l)	cuprous
C0 ³⁺	cobalt(III)	cobaltic
C0 ²⁺	cobalt(II)	cobaltous
Sn ⁴⁺	tin(IV)	stannic
Sn ²⁺	tin(II)	stannous
Pb ⁴⁺	lead(IV)	plumbic
Pb ²⁺	lead(II)	plumbous
Hg ²⁺	mercury(II)	mercuric
$\mathrm{Hg_2}^{2+\star}$	mercury(I)	mercurous

*Mercury(I) ions always occur bound together in pairs to form Hg2²⁺.

Naming type II Binary Ionic Compounds

- 1. Determine the charge on the cation (metal).
- 2. Name the compound like a type I ionic compound.
- 3. Include a roman numeral that represents the charge between the cation and anion.

Name of cation (metal)

(Charge of cation (metal) in roman numerals in parenthesis) Base name of anion (nonmetal) + -ide

Practice

• $CoBr_2$

- cobalt(II) bromide
- CrCl₃
- chromium(III) chloride
- SnO_2
- tin (IV) oxide
- CaCl₂
- calcium chloride

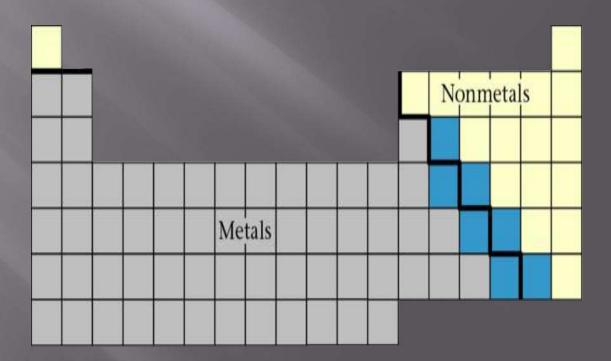

4.2 naming binary compounds that contain only nonmetals (Type III)

TABLE 4.3

Prefixes Used to Indicate Numbers in Chemical Names

Prefix	Number Indicated	
mono-	1	
di-	2	
tri-	3	
tetra-	4	
penta-	5	
hexa-	6	
hepta-	7	
octa-	8	

Type III contain only nonmetals

Examples

TABLE 4.3

Prefixes Used to Indicate Numbers in Chemical Names

Prefix	Number Indicated	
mono-	1	
di-	2	
tri-	3	
tetra-	4	
penta-	5	
hexa-	6	
hepta-	7	
octa-	8	

BF₃
boron trifluoride
NO

nitrogen monoxide

■ N₂O₅

dinitrogen pentaoxide

 $\bullet P_4O_6$

Practice

■ P₄O₆

- Tetraphosphorus hexaoxide
- PCl₅
- Phosphorus pentachloride
- S₃O₂
- Trisulfur dioxide

4.4 Naming compounds that contain polyatomic ions (non-binary)

These compounds are named just like type I or type II binary ionic compounds but the name of the polyatomic ion must be used.

TABLE 4.4

Names of Common Polyatomic Ions

lon	Name	lon	Name
NH ₄ ⁺	ammonium	CO3 ²⁻	carbonate
NO_2^-	nitrite	HCO_3^-	hydrogen carbonate
NO_3^-	nitrate		(bicarbonate is a widely
SO32-	sulfite		used common name)
SO42-	sulfate	CIO ⁻	hypochlorite
HSO₄ [−]	hydrogen sulfate	CIO_2^-	chlorite
-	(bisulfate is a widely	CIO_3^-	chlorate
	used common name)	CIO_4^-	perchlorate
OH-	hydroxide	$C_2H_3O_2^{-}$	acetate
CN^{-}	cyanide	MnO_4^-	permanganate
PO4 ³⁻	phosphate	$Cr_2O_7^{2-}$	dichromate
HPO_4^{2-}	hydrogen phosphate	CrO4 ²⁻	chromate
$H_2PO_4^-$	dihydrogen phosphate	02 ²⁻	peroxide

 Ammonium is the only polyatomic cation (positive ion).

•All the rest are anions (negative ion).

TABLE 4.4

Names of Common Polyatomic Ions

lon	Name	lon	Name
$\rm NH_4^+$	ammonium	CO3 ²⁻	carbonate
NO_2^-	nitrite	HCO3-	hydrogen carbonate
NO_3^-	nitrate		(bicarbonate is a widely
SO3 ²⁻	sulfite		used common name)
SO4 ²⁻	sulfate	C10 ⁻	hypochlorite
HSO₄ [−]	hydrogen sulfate	CIO_2^-	chlorite
-	(bisulfate is a widely	CIO_3^-	chlorate
	used common name)	CIO_4^-	perchlorate
OH⁻	hydroxide	$C_2H_3O_2^{-}$	acetate
CN^-	cyanide	MnO_4^-	permanganate
PO4 ³⁻	phosphate	Cr ₂ O ₇ ²⁻	dichromate
HPO_4^{2-}	hydrogen phosphate	CrO4 ²⁻	chromate
$H_2PO_4^-$	dihydrogen phosphate	022-	peroxide

Practice Ca(OH)2

TABLE 4.4

Names of Common Polyatomic Ions

lon	Name	lon	Name
NH4 ⁺	ammonium	CO32-	carbonate
NO_2^-	nitrite	HCO ₃ ⁻	hydrogen carbonate
NO_3^-	nitrate		(bicarbonate is a widely
SO32-	sulfite		used common name)
SO42-	sulfate	CIO ⁻	hypochlorite
HSO₄⁻	hydrogen sulfate	CIO_2^-	chlorite
	(bisulfate is a widely	CIO_3^-	chlorate
	used common name)	CIO_4^-	perchlorate
OH⁻	hydroxide	$C_2H_3O_2^{-}$	acetate
CN^{-}	cyanide	MnO_4^-	permanganate
PO4 ³⁻	phosphate	Cr ₂ O ₇ ²⁻	dichromate
HPO42-	hydrogen phosphate	CrO4 ²⁻	chromate
$H_2PO_4^-$	dihydrogen phosphate	0 ₂ ²⁻	peroxide

Na₃PO₄

• $\overline{\mathrm{KMnO}_4}$

Co(ClO₄)₂

• $Cu(NO_2)_2$

Practice Ca(OH)2

TABLE 4.4

Names of Common Polyatomic Ions

lon	Name	lon	Name
NH ₄ ⁺	ammonium	CO3 ²⁻	carbonate
NO_2^-	nitrite	HCO3 ⁻	hydrogen carbonate
NO_3^-	nitrate		(bicarbonate is a widely
SO3 ²⁻	sulfite		used common name)
SO4 2-	sulfate	CIO ⁻	hypochlorite
HSO₄ [−]	hydrogen sulfate	CIO_2^-	chlorite
	(bisulfate is a widely	CIO_3^-	chlorate
	used common name)	CIO_4^-	perchlorate
OH-	hydroxide	$C_2H_3O_2^{-1}$	acetate
CN^{-}	cyanide	MnO_4^-	permanganate
PO4 ³⁻	phosphate	$Cr_2O_7^{2-}$	dichromate
HPO ₄ ²⁻	hydrogen phosphate	CrO ₄ ²⁻	chromate
$H_2PO_4^-$	dihydrogen phosphate	02 ²⁻	peroxide

calcium hydroxide Na₃PO₄ sodium phosphate KMnO₄ potassium permanganate $Co(ClO_4)_2$ cobalt(II) perchlorate $Cu(NO_2)_2$ copper(II) nitrite

Rules for naming acids

- 1. If the anion doesn't contain oxygen, then the prefix *hydro-* and suffix *-ic* is added to the root name of the element.
- 2. If the anion does contain oxygen, then the suffix *-ic* or *-ous* is added to the root name of the anion.
 - If the anion ends in *−ate* the suffix *−ic* is used.
 - If the anion ends in *–ite* the suffix *–ous* is used.
- *3. acid* is added to the end of the name.

H₂SO₃ **You T** *stylfutous* acid HBr

- hydrobromic acid
- HI (this is an I eye)
- hydroiodic acid
- H₂CO₃
- carbonic acid
- H_3PO_4
- phosphoric acid
- HCN
- hydrocyanic acid

Examples

- cesium fluoride
- CsF
- carbon disulfide
- CS₂
- nickel (II) perchlorate
- Ni(ClO₄)₂
- Nitrous acid
- HNO₂

potassium hydroxide

tin (IV) oxide

nitric acid

dinitrogen pentoxide

- potassium hydroxide
- KOH
- tin (IV) oxide
- SnO_2
- nitric acid
- HNO₃
- dinitrogen pentoxide
 N₂O₅

Practice

Chapter Questions/Homework

#63, 64, 75, 79,