Chapter 1

AP Chemistry

What Is Chemistry

- Science of materials and the changes they undergo.
- Micro or Macro?
 Macro large scale
 Micro small scale

The Scientific Method

- The scientific method is a logical approach to solving scientific and everyday problems.
- The steps are as follows:
- Observation → Hypothesis
 Experiment → Conclusion
 Theory

Observation and Question

- An observation is a way of gathering information using one or more of your senses.
- There are two types of observations.

Hypothesis and Experiment

- A hypothesis is an educated guess to the question raised by the observation.
- An experiment is then run to test the validity of the hypothesis.
- The experiment is repeated many times to ensure correct results.

Conclusion

- A statement about if you have or have not disproved your hypothesis.
- If you have not disproved your hypothesis you may move on to theory.
- If you have disproved your hypothesis you must go back and form a new hypothesis and experiment.

Scientific Theory

- Once a scientific hypothesis passes the test of repeated experiments, it may become a theory.
- A theory explains *why* experiments give the result they do.
- A theory can never be proven because a new experiment may disprove it.

Scientific Law

- A law is a short statement of behavior or relation that always seems to be the same under the same conditions.
- A law describes natural phenomena without attempting to explain it.

Basic Units of SI

- These are the basic units of
 - the SI system.
- You will need to memorize them, like now.

SI Base Units		
Quantity	Base unit	
Time	second (s)	
Length	meter (m)	
Mass	kilogram (kg)	
Temperature	kelvin (K)	
Amount of a substance	mole (mol)	
Electric current	ampere (A)	
Luminous intensity	candela (cd)	

Prefix	Symbol	Meaning	Exponential Notation
Giga	G	1 billion	10 ⁹
Mega	М	1 million	10 ⁶
Kilo	К	1,000	10 ³
Hecto	h	100	10 ²
Deka	da	10	10 ¹
		1	10 ⁰
deci	d	0.1	10-1
centi	С	0.01	10-2
milli	m	0.001	10 ⁻³
micro	u	1 millionth	10 ⁻⁶
nano	n	1 billionth	10-9
pico	р	1 trillionth	10-12

Volume

- Volume is how much 3D space an object takes up.
- SI unit is m³.
- One thousandth of which is a dm³, aka a liter (L).
- One thousandth of which is the cm³ or mL.

Measuring Volume

 We mostly measure V with a graduated cylinder but also with these, all of which are marked on the side.

Mass vs. Weight

- Mass is the amount of "stuff" something has. (Resistance to change in motion)
- Weight is how much force that thing exerts because of gravity.
- What if no gravity?

5.4 uncertainty in measurement

- Many measurements are made of objects that make us estimate
- So, we'll always argue about the last number or two.
- The ones we *agree* on are called **certain**, the *argued* ones are uncertain.

Uncertainty

31.831.731.8

31.8

31.6

31.7

31.7

- Every measuring device has some degree of uncertainty
- The certain numbers + the one uncertain # are called significant figures

5.5 Significant Figures

- This balance displays 89.2863 grams and not just 89 grams for a reason!!!
- You must record the certain numbers and the one uncertain one as your data.

Rules for Counting Significant Figures

- Nonzero integers. Nonzero integers always count as significant figures. For example, the number 1457 has four nonzero integers, all of which count as significant figures.
- 2. Zeros. There are three classes of zeros:
 - **a.** *Leading zeros* are zeros that *precede* all of the nonzero digits. They *never* count as significant figures. For example, in the number 0.0025, the three zeros simply indicate the position of the decimal point. The number has only two significant figures, the 2 and the 5.
 - **b.** *Captive zeros* are zeros that fall *between* nonzero digits. They *always* count as significant figures. For example, the number 1.008 has four significant figures.
 - **c.** *Trailing zeros* are zeros at the *right end* of the number. They are significant only if the number is written with a decimal point. The number one hundred written as 100 has only one significant figure, but written as 100., it has three significant figures.

zero translation...

- Front? Never!
- Within? Always!
- End? Only if.

Sigfig Examples

- The mass of an eyelash is 0.000304 g
- 3
- The length of the skidmark was 1.270 x 10² m
- 4
- A 125-g sample of chocolate chip cookie contains 10 g of chocolate
- 3, 1
- The volume of soda remaining in a can after a spill is 0.09020 L
- 4
- A dose of antibiotic is 4.0 x 10⁻¹ cm³

One More Thing...

3. *Exact numbers.* Often calculations involve numbers that were not obtained using measuring devices but were determined by counting: 10 experiments, 3 apples, 8 molecules. Such numbers are called *exact numbers.* They can be assumed to have an unlimited number of significant figures. Exact numbers can also arise from definitions. For example, 1 inch is defined as *exactly* 2.54 centimeters. Thus, in the statement 1 in. = 2.54 cm, neither 2.54 nor 1 limits the number of significant figures when it is used in a calculation.

Multiplying and Dividing

- Answers will have as many sigfigs as the working number w/ the **FEWEST**
- Examples
- **2.34 3.2** = **7.488**?
 - Smallest number of s/d is 2 so 7.5
- **35.0 / 6.734 = 5.1975051975?**
 - Smallest number of s/d is 3 so 5.20

Addition and Subtraction

- First add them up! Don't worry about sigfigs until the end!
- 3.75 + 4.1 = 7.85
 - You can only go to where all numbers have something to contribute, so can only go to 7.9
- 3.987 + 4.60 = 8.587

- But can only go to 0.01, so 8.59

Precision vs. Accuracy

- <u>Accuracy</u>: Agreement with true value
- <u>Precision</u>: Agreement between measurements
- <u>Random Error</u>: Equal probability of being high or low. (Estimating)
- <u>Systematic Error</u>: Same direction each time.
 (Poor technique or inaccurate device)

5.6 Dimensional Analysis

- Converting one measurement into another.
- Uses equivalency statements (fancy term for two things that mean the same thing)
- Examples of equivalency statements:
 - 1ft. = 12in.5280ft. = 1mi.
 - -10^{6} m = 1Mm1000m = 1km
 - -1m = 100cm1m = 1000mm
 - $-1m = 10^{6}\mu m1m = 10^{9}nm$
 - 1cm = 10mmand on and on and on

Steps of Dimensional Analysis

- 1. Write what you know (given)
- 2. Write where you are going (wanted)
- 3. Write a large H.
- 4. Determine conversion factor(s).
- 5. Fill in units (unit of given is on the bottom of the first H)
- 6. Fill in numbers of conversion factor.
- 7. Multiply the given by everything on the top and divide by everything on the bottom.

Examples

- 6.5dz = ____donuts
- 10.ft = ____in
- 10,000ft = ____mi
- 5m = ____cm
- 1050mg = ____g
- 17.4mi = ____ft
- 17.4mi = ____in
- 45 min = _____sec

5.7 Temperature Conversion

- Big Three Temp Scales are
 Fahrenheit,
 Celsius, and
 Kelvin
- In science we use almost exclusively C and K

Converting Between K and C

- A degree C and K are the same amount; they just differ by their starting points
- They only differ by 273

• T_{C} + 273 = T_{K}

Conversion Problems

- What is 70° in kelvins?
- $T_{C} + 273 = T_{K}$
- $70 + 273 = T_K$
- **343 K** = T_K
- Nitrogen boils at 77 K. What is that in C?
- $T_{C} + 273 = T_{K}$
- $T_C = T_K 273$
- T_C = 77 273
- T_c = -196 °C

Converting Between C and F

- Here we have different size units and different starting points! yikes!
- short story:

 $T_F = 1.8T_C + 32$

Examples

- It's 28° outside. What is that in F?
- $T_F = 1.8T_C + 32$
- $T_F = 1.8(28) + 32$
- T_F = 50. + 32
- T_F = 82 F
- It's -40.°C in that lab freezer.
 What's that in F?
- $T_F = 1.8T_C + 32$
- $T_F = 1.8(-40.) + 32$
- $T_F = -72 + 32$
- $T_F = -40F$ (!)

More Examples

- You have a 101F fever. What is that in C?
- $T_F = 1.8T_C + 32$
- $101 = 1.8T_{C} + 32$
- $69 = 1.8T_{C}$
- 38°= T_C

5.8 Density

- **Density** is just how much stuff is crammed into a certain space
- In science speak it's mass/volume:

 Finding mass is no problem; how do you find volume? A chm studen ispects that a medallion might be **platinum**. If friend thinks it is **silver**. She first weighs the medallion and finds it to be \$5,64 graps. She then places some water in a between and reads the volume at 75.2 mL. After drops by the medallion into the cylinder the water revel rises to 77.8 mL.

Is the control of the second se

Example 2

A student needs 450 cm³ of salt for an experiment.
 (Density_{salt} = 2.16 g/cm³)
 How many 1-lb boxes should he buy?(1 lb = 454.5 g)

- All the "stuff" in the universe is composed of matter.
- Matter is anything that has mass and takes up space (has volume).
- All matter is composed of a relatively small number of fundamental particles.

What are these particles called?

Atoms are the smallest particles of an element that still retain the properties of that element.
Question: Are all atoms the same?

Molecules

- Particles composed of two or more atoms that are bonded together.
- Molecules can be formed from one or more types of atoms.

Substances

- Pure substances <u>always</u> have the same composition.
- Substances have only one type of molecule.
- Substances can be either elements or compounds.
- Pure water (only H₂O) is a substance. Naturally occurring water is not. Why not?
- Is air a substance? If not, what do we call it?

Elements

 Substances that contain only one type of atom are called elements.

Compounds

- Substances

 composed of two or
 more different types
 of atoms bonded in a
 specific way.

 Compounds consist of the same particles throughout.

Mixtures

- A mixture is a gollection of two or more pure substances.
- Mixtures have variable composition.
 Examples: Air, Water, Kool-Aid, Soda, Blood.
- Mixtures of metals are called alloys.
 There are two types of mixtures.
 - Homogeneous
 - Heterogeneous

Homogeneous Mixtures

- Does not vary in composition from one region to another.
- Also known as a <u>solution</u>.
- Ex: Salt Water, Brass, Kool-Aid, Soda, Air

Heterogeneous Mixture

 A mixture of two or more pure substances that contains regions that are different than other regions.

Separation of Mixtures

• <u>Distillation</u>: used to separate mixtures based on differences in volatility (boiling point).

Separation of Mixtures

 <u>Filtration</u>: separates mixtures of solids and liquids.

Separation of Mixtures

 <u>Chromatography</u>: Uses two phases (mobile and stationary) to separate mixtures based on the affinity of the components for the two phases.

a500258 [RM] © www.visualphotos.com

Phases or States of Matter

- Solid- Has definite volume and shape.
- Liquid- Has definite volume but no definite shape.
- Gas- Has neither definite volume nor shape.

Melting Evaporating Solid Liquid Gas \leftarrow SolidificationCondensation

Physical Change

- Changes in a substance that do <u>not</u> change the composition or identity of the substance.
- Examples:
 - Changes of phase. (Solid, Liquid, Gas)
 - You accidentally break a glass into many pieces.
 - You step on a piece of chalk and it becomes powder.

Chemical Changes

- Also called Chemical Reactions
- Changes in a substance that <u>do</u> change the composition or identity of the substance.
- Examples:
 - Cooking food.
 - Burning anything.
 - Breathing, digesting, thinking, learning.
 - Everything that is not a physical change.

Chapter Questions/Homework

28, 34, 36 ef, 52 ^oC only, 53, 67, 71