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Topics 1n Differentiation

= We are now going to differentiate (take the
derivative of)functions that are either
difficult to differentiate in y= form (defined
explicitly) orimpossible to write in y= form
and “differentiate directly”.

* Therefore, we need new methods such as
implicit and logarithmic differentiation to find
these derivatives in another and/or faster
way.




Explicit vs. Implicit

= For more information on the difference between
explicitly and implicitly defined, please read
pages 185-186.

* |n general, itis not necessary to solve an
equation fory (in terms of x) in order to
differentiate a function.

= Onthe next slide, | will take the derivative of a
relatively easy function two different ways so
that you can see the difference.



| Example Two Ways

If we want to find the derivative of xy = 1, we could solve for y first if we wanted to: y = Zox?
e o

and we could take its derivative by using the power rule which would give us d—}
&

-1

Anocther way to obtain this derivative isto differentiate both sides of the original equation xy=1

before solving for y.

xy =1 — . This is the original equation.

d .
—, Mmeans to take the derivative.
-

ar 1@
E[I}’]— — 11

On the left, | did the product rule fg+g'f. Onthe right, the

1y)+y'(x) =0
() +¥'(x) derivative of a constant is zero.

¥ +IE =0 dy
cx | changed ¥ to = They mean the same thing.

&
ax Y Subtract y from both sides.

_Zy Divide both sides by x.

dx x

_:
& _ s

dx  x 17 Substitute & Simplify




Example Results

= We got the same answer using both methods.

= Solving for y was obviously much faster, but it
is not always possible to solve for y first (see
example on next slide).

= Now we know another method.
Differentiate “implicitly”
Solve for dy/dx
Then substitution




| Example Where We Cannot Solve
for y First

Use implicit differentiation to find? if5y? +siny=x%
X

E . d d " :
= [5v* + siny] = d—[xz] — means to take the derivative of both sides.
&£ X X

(10v) * v + (cos y) *y'= 2x On the left, | did the power rule and the derivative of sin y.
The new part is the y'. See explanation on next slide.

{10v) *:—: + (cos y) *:—ir = 2x I changed y' to :—: They mean the same thing.

:—: (10y+ cos y) = 2x Factor out :—"v on the left side of the equation.

X

ay _ = Divide both sides by 10y+ cos v.

dx
**Normally, we would substitute & simplify. Since we
cannot solve the original equation for y, we are forced to

leave the answer in terms of x and y (with both x's and y's
in the answer.**




| Second Derivative Example

. dly B
Find oz ifxcosy=y.

di [xcosy ] = :—x[}’] :—x means to take the derivative of both fisxandgiscosy

sides.
sof =1 and

1*cosy —{-siny)* vy * x=y'  Onthe left, | did the product rule.
g =-siny*y

I changed ¥ to :—: since they mean the same
dy
dx thing and | simplified.

. ay

COS Y +X sin y*d— =
£

=2y

Cos Y+ = ay ¥ 5in
? dx ? dx

. d .
Subtract x sin y*d—y from both sides.
& 3

Cosy+= :—i (1- % siny) Factor out :—i’ on the left side of the

equation.
_ COEW

1- x=iny

Divide both sides by 1- x sin y.

*That was just the first derivative©. Second
derivative is on the next slide.




| 2nd Derivative Example (cont.)

Find =2 if —y. (Continued
ind— ifxcosy=y. {Continued)

r d COE d . . .

—] = =1 — of the derivative gives us the

dx "1+ xeiny dx e
second derivative.

dZy _ [{=siny=y") = (1+ xsin ¥) - (sin ¥ + xcosy = y)=cos y]

dx? (1+ xsiny)? On the right, | did the quotient rule.

— &N V=& —— | # + XK =1n — LE1N + HCOE Y < |*CDS B
o . dy . . dy
¥ _ da da dy .
= —— | changed y' to — since they mean
{1+ x=iny) dx

the same thing and | simplified.

Ccos vy

COSV . COE Y dy
T+ xsiny J#cos ¥] Substitute ——— for —

#*(1+ xs5in ¥ — (5in ¥ -XCO5 ¥ * ————
] |: F] ': ¥ ¥ 1+ xsiny 1+ x=iny dx

{1+ xsiny)?

=i in2 ; i 3 .
. sinycosy _Xsin‘ycosy _ sinycosy xsmzyt_'nsy_ xcos7y Distribute and get a common
d*y _ 1+xsiny 1+ usiny 1+ xsiny 1+ xsiny 1+ xsiny

dx? {1+ xsiny)?

denominator.

dZy _ —2sinycos y—Xcosy (sin®y+sin®y+cos?y)
dx? {1+ xsiny)?

Combine like terms and factor out
xcosy of several terms.

dZy _—sin 2y-y (sin®y+1)
dx? {1+ xsiny)?

Apply trig identities sin’y + cos?y =1
and sin double angle formula and
substitute x cos . DONE!II!®




| Natural Log vs. Common Log

The derivative when you are taking the
natural log of just x.

d |
—IInx]=-—, x>0
X X

The derivative when you are taking the
natural log of something other than x
(u). You must use the Chain Rule.

The derivative when you are taking the
logarithm with a base other than e of just
X.

& gie ;
—lo = , >
T b

The derivative when you are taking the log
with a base other than e of something
other than x (u). You must use the Chain
Rule.

du
ulnb dx

d[l |
— lloe ] —
T b




Why 1s the Natural Logarithm
preferred?

= Among all possible bases, base e produces
the simplest formula for the derivative of
logpx. This is the main reason (for now ©)
that the natural logarithm function is
preferred over other logarithms in Calculus.

= Look at the previous slide and notice how
much smaller the formulas are in the first
column than those in the second column.



| Examples

Find = [In(x2 + 1)].
dx

Ei Ll
(In(x2 + 1)] el N O

dx Apply dx i dX 3ndthe Chain Rule

ok the derivative of the inside

Find = [In{cosx)].
(rke

i
[In{cosx)] i[lnu] R L

ax Apply ¥ and the Chain Rule

* the derivative of the inside
COEX

g —EinRnx
¥—SinyY = =-tan x
CoOBEX CoOEX




Logarithmic Differentiation

= Some derivatives are very long and messy to
calculate directly, especially when they are
composed of products, quotients, and powers all

in one function like

= You wou
rules wit
quite aw

d have to do the product and chain
nin the quotient rule and it would take

nile.

"= Therefore,



| Logarithmic Differentiation

Example
¥ 7 —14

oL

gsr_______
Iny=1In (%}

Iny=Inx37x— 14 — In{1 +x2)*

1
Iny=Inx?+In(7x — 14)3 - In(1+ x2)*

Iny=2lnx +§ln (7x —14) —41n (1 + x2)

1
1+IE*EI

+ gx
x 3Tx—14) 1+x°

Lij, B { 1 8x IE"I,I'E Tx—14

¥ 3x—6 1+ x° {‘l+x2}“

)*y

Take the natural logarithm of both sides

Apply the guotient property of logarithms.
Apply the product property of logarithms.
Apply the power rule of logarithms.

Tak;e the derivative of both sides and use
1 of if

d x o dx

To get% alone, multiply both sides by y. |
also simplified the right side.

Substitute the original functionin fory.




Logarithmic Differentiation
Steps

1. Take the (whatever
you do to one side, you must do to the
other) since base e is easier than any other
base (see slide #5).

2. Apply ALL of the possible

3. Take the
4. Multiply both sides by vy.

5. Substitute the original in for y and simplify.




One-to-One and Inverse
Functions (reminders from
Section 0.4)

0.4.4 THEOREM (The Horizontal Line Test) A function has an inverse function if and
only if its graph is cut ar most once by any horizontal line.

Flxy) = flay) —e——s

One-to-one, since filay) = flxz) | Mot one-to-one, since
if xy =xy | fle) = filxz)and xy =+ x; |

0.4.5 THEOREM If f has an inverse, then the graphs of y = f(x) and y = f~'(x)
are reflections of one another about the line y = x; that is, each graph is the mirror
image of the other with respect to that line.




One-to-0One and Inverse

Functions (continued)

= Note: Sometimes, it is necessary to restrict
the domain of an inverse f-! (x)=x or of an
original f(x) in order to obtain a function (see
examples on page 44).

= A function f(x) has an inverse iff it is one-to-
one (invertible), each x has one y and each y

has one x (must pass vertical and horizontal
line tests).




Increasing or Decreasing
Functions are One-to-One

= |f the graph of a function is always increasing
(f'(x)>0) or always decreasing (f'(x)<o), then it
will pass the horizontal and vertical line tests
which means that the function is one-to-one.




Derivative of Exponential Functions

= After the last few slides, you probably do not want to see a proof
here. © If you would like to read the proof(s) of these derivatives,
please see pages 198-199.

The derivative when you have The derivative when you have
any base otherthanetojust  only base e to just the x
the x power. power.

d d . )
[br] =5* Inb [E-' ] —= e
dx

dx

The derivative when you have The derivative when you have
any base other than e to only base e to to something
something other than just the other than just the x power

X power (u). (). y y
. U

d du L [
E[bﬂ] =b"Inb - - Jx le"] = ¢ Tx

X




| Logarithmic Differentiation

Example

y = {IE + l}sin.x
Iny =In(x?+ 1)5n% Take the natural logarithm of both sides
Iny = (sinx) #In (x*+ 1) Apply the power property of logarithms.

Take the derivative of both sides using the

ol 1 ' d 1 du
s A % SINy —[Inu] = - . —
productruleand 9% w o ody
]
l d
1ldy Ty % SNy To getﬁ alone, multiply both sides by y. |
y e gy = (cosx) +in(x®+1) + )*y also simplified the right side.
yax 2+1
dy Z:u:smx

— = ((cosx) *In(x*+ 1) +

= ) + e

Substitute the original functionin fory.




Related Rates Problems

" Inrelated rates problems, we are trying to
find out the rate at which some quantity is
changing related to other quantities whose
rates of change are known.




O1l Spill Example:

Assume that oil spilled from a ruptured tankerspreadsin a circular patternwhose radiusincreasesat a
constantrate of 2 ft/s. How fast is the area of the spill increasing when the radius of the spill is 60 ft?

1. Let t=numberofseconds aftertime of the spill
r=radius of the spill aftert seconds
A=areaofthe spill aftert seconds (square feet)

. We [‘cru::'.ru'E =2 It

since it was given in the question
dt Fecond

We are trying to find E when r = 60 feet

3. A=mr? Areaof a circle

B mpndy Take the derivative of both

dt dt sideswithrespecttot
implicithy (whichis %}.
. 22 When ris 60 feet = 21(60)(2)
dt £22 Substitute and solve
= 2401 — ® 754 ft?/sec

F8C



Strategy for Solving Related

Rates Problems

= |f you noticed the numbers #1-5 on the last
example, those are the steps that | suggest

you follow when solving these problems.
A Strategy for Solving Related Rates Problems

Draw and label
Step 1. Assign letters to all quantities that vary with time and any others that seem

Have and need relevant to the problem. Give a definition for each letter.

Step 2. Identify the rates of change that are known and the rate of change that is to be

_ . found. Interpret each rate as a derivative.
Relating equatio . . | o
Step 3. Find an equation that relates the variables whose rates of change were identified

in Step 2. To do this, it will often be helpful to draw an appropriately labeled
d/dt both sides figure that illustrates the relationship.
Step 4. Differentiate both sides of the equation obtained in Step 3 with respect to time
to produce a relationship between the known rates of change and the unknown
Substitute/solve rate of change.

Step 5. After completing Step 4, substitute all known values for the rates of change and
the variables, and then solve for the unknown rate of change.




Rocket Example

The camerais mounted at a point 3000 feetfromthe base of a rocket
launching pad. If the rocketis rising vertically at 880 feet/second whenitis
4000 feet above the launching pad, how fast must the camera elevation angle
change atthat instant to keep the cameraaimed at the rocket?

1. Draw and label:

Let t=numberof seconds aftertime of the launch
@=cameraelevation angle in radians after t seconds
h=height of the rocket aftert seconds (feet)

. We knnwd— when the height is 4000 ff = 880

Fecond

We are trying to find % when height = 4000 feet

. Equation relating the variables h and ¢:

R
tan @ = o may

: 3
want to rewriteas: tang@ = —h
3000

. Take the derivative of both sides with respect to t implicitly.

i 1 ghn
P ar 3000 ar

s o SRS ol
. 5ec q.:: P (BB[}}

(5] °% - (880)

i/ dr 3000

f when h is 4000 feet=

ASIDE: 30002 + 40002 = x?2

5000000+16000000=x"2
¥=3000

%(ﬁ} & 1lrad/sec® 1— % 6.05 deg/sec

Givenin question

Since an angle is involved, we
mustuse trig. We have the
adjacent side and are talking
about height which is the
opposite side— ftangent

Substitution

We still have too many
variables, sowe needtosolve

hyp
for sec p=——here.
adj

More substitution and solve




Similar Trliangles Example

Suppose that liquid is to be cleared of sediment by allowing it to drain through
a conical filter that is 16 cm high and has a radius of 4 cm at the top (see picture
atright). Suppose alsothat the liquid is forced out of the cone at a constant
rate of 2 ﬂ:. At what rate is the depth of the liquid changing at the instant
whenthe liquid in the coneis 8 cm deep?
1. Draw and label:
Let t=numberofsecondsafterinitial observation

V=Volume of liquid in the cone after t seconds (em?)

y=depth of the liquid in the cone aftert seconds {cm)

r=radius of the liquid surface at time t (cm)

om

L Given in question (negative

e becauseVolumeis
decreasing in the cone).

We are trying to find % when depth = 8cm

3. Equiticm relating the variables V and = Volume of a cone :i mrih
. W= E*m':}‘ Which has too many variables, sowe need to replace r. Similar triangles: E o i
1 = !
" v =En(§) v Simplify before going on to 4 to make derivative easier. Solve above forr— r%
B LI
V=1?
4. Take the derivative of both sides with respectto t implicitly.
ol A D T
dt 48 dt
5. Py A 5 L s OO Substitution, then divide to
48 dt de

solve fordy/dt.

% when depthis8cocm = ;—: M —1b6cm/min




Indeterminate Forms

" |n this section, we will discuss a general
method for

= This method will allow us to find limits that
we were previously only able to find by
graphing (like the squeezing theorem).

= Many computers use this method (internally)
when calculating limits.




| 0/0 Type Indeterminate Form:

L°’Hopital’s Rule

3.6.1 THEOREM (L'Hapital’s Rule for Form 0/0) ~ Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

Im f(x) =0 and lmg(x)=0

X—*0a X—a

If im[ f'(x)/g'(x)] exists, or if this limit is +-o or —oo, then

X—d

=
l‘l

Moreover, this statement is also true in the case of a limitasx ->a~, x = a™, x — —wx,
oras x — —+o.




Warning and Steps

= ** Please notice that the numerator and
denominator are differentiated individually.
(you take their ) Itis
NOT the same as (f/g)’, so you are NOT using
the quotient rule.**

Applying L'Hopital’s Rule

Step 1. Check that the limit of f(x)/g(x) is an indeterminate form of type 0/0.

Step 2. Differentiate f and g separately.

Step 3. Find the limit of f'(x)/g’(x). If this limit is finite, 4o0, or —co, then it is equal
to the limit of f(x)/g(x).




| Example Two Ways

-4
Find the limit: limv,,:_,,;ﬁ—2
Ix:_

Using L'Hopital’s Rule:

1—4 224

Step 1: llm_x;_;.g

=2y

-4
Step 2: llqugdﬁ%
&

dx }

2x 2(2)
lim, _.,— T

I

Step 3: 4is finite, therefore, lim..,:_}gx—2 =
x—

—4

4

Check thatit is indeterminate form 0/0

Take the derivative thhe top and bottom

If this limit is finite, +co, 0r — oo, then it is equal to
the limit of f{x)/g(x).

Using methods from Chapter 2

(x+2)x—2)
x—2

xi—4
lim = lim
=2y —2 T x—2

= lim
x—=2

=2+2=4
We getthe same answer both ways.

x+2

Simplify first

Then evaluate the limit by substitution




Another example

= There are five more similar examples on pages
221-222 if you are interested.

= For the example below, | cannot use algebraic
methods from Chapter 2 and | do not know how
to graph it without a calculator.

= Thisis when L'Hopital’s Rule is especially useful.




| Make sure you do step 1!

p———— .

Applying LHﬁprtaI s rule to limits that
are not indeterminate forms can pro-

duce incorrect results. For example, the
computation

lim - — 1
r—}ﬂl"i-q -

is not valzd since the limit is not an

mdetermmate form. The correct result
S

i xX+6
A0 x4 2




Another version of L’Hopital’s Rule

= This version is used to find the limit of ratios
in which the numerator and denominator
both have infinite limits.

3.6.2 THEOREM (L’Hépital’s Rule for Form =[ =) Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim f(x) = and lim g(x) =

X—a X—rd

If im[f'(x)/g'(x)] exists, or if this limit is 4o or —, then

X—+d

fix)y . fl(x)
x—a g(x) x—ag'(x)

li

Moreover, this statement is also true in the case of a limitasx -a~,x—a*,x— —w,
or as x — +m,,




Example this version of L’Hopital’s
Rule

= Similar steps are required as the original
version of L'Hopital’s Rule.

Verify that numerator and denominator have
infinite limits.

Derivative of numerator and denominator
SEPARATELY.

Find the new limit.




Repeated applications of
L°’Hopital’s Rule Example

= Sometimes you will get an indeterminate form again
after applying L'Hopital’s Rule the first time and it will be
necessary to do it again.




Other indeterminate forms

= There are several other types of
indeterminate forms that you will see on
pages 224 & 22¢.

= Many of you keep forgetting about the other
types, so | suggest you look at these two
pages and see if you have questions.




| One Idea to Consider

WARNING

It is tempting to argue that an inde-
terminate form of type 0 - = has value
0 since “zero times anything is zero.
However, this is fallacious since Q-cois
not a product of numbers, but rather
a statement about limits. For exam-

ple, here are two indeterminate forms
of type 0-w whnse limits are not zero:




Rock Buggy




